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PREFACE



The usual way of teaching geometrical optics involves tracing light rays from
one surface to another in the lens system. It is necessary to determine an
image for each surface, and this image acts as the object for the succeeding
one. Location of the final image may be a fairly complicated process for a
system having several components.

The purpose of this small book is to show that the analysis of a lens sys-
tem—no matter how complex—can be simplified, and made virtually auto-
matic by combining elementary matrix algebra with some reasonable con-
ventions. Matrix methods have the additional advantage of being easily
adaptable to computers, and some typical programs are given as examples.
It is hoped that this new approach to optics will not only make the basic
principles easy to apply, but show the fascinating and exciting nature of this
subject.

The arrangement of material that has been used here is adaptable to the
reader’s mathematical background. The first five chapters, which cover the
elementary theory of lens systems, assume only a knowledge of algebra and
trigonometry. Hence this portion of the book should be useful to students,
such as those in technical institutes, who may not be familiar with calculus.
Further, Chapters 1 through 4 cover topics which are usually included in
the geometrical optics portion of college-level physics sequences. These four
chapters would thus serve as a supplementary or alternative approach in
such courses.

The last part of this book—Chapters 6, 7, and 8—require a knowledge of
partial differentiation and multiple integration; topics considered in this part
include light as a form of energy and the theory of aberrations; this material
is appropriate to the course in geometrical optics customarily offered to
physics majors.

As mentioned above, computer methods are used for examples which are
tedious when worked by hand. For those readers who are unfamiliar with
programming, a brief and self-contained introduction to FORTRAN will
be found in Appendix 1. We have chosen this programming language, since



it is the one in common use. Because FORTRAN, as normally taught, gives
the impression of consisting of a large number of confusing rules, it is pre-
sented in this appendix in an unusual way. A specific problem—the multi-
plication of several 2 X 2 matrices—is posed, and then the step-by-step
solution is given, permitting the reader to teach himself the rules as he needs
them.

The matrix approach to optics used in this book is based primarily on the
treatments given in the following books:

Brouwer, W., Matrix Methods in Optical Instrument Design. New York:
W. A. Benjamin, Inc., 1964.

O’Neill, E. L., Introduction to Statistical Optics. Reading, Mass.: Addison-
Wesley Publishing Co., 1963.

Leatham, G. G., The Elementary Theory of the Symmetrical Optical Instru-
ment. New York: Hafner Publishing Co., 1960.

This material was originally developed in connection with a course offered
at the IBM Company in Rochester, Minnesota. 1 am grateful for the sug-
gestions received from this group of students, and especially the help of Dr.
Robert Kulterman and Dr. Milton Chace.

The discussion of zoom lenses has benefited greatly from my correspon-
dence with Dr. Klaus Halbach and from discussions with Professor Clayton
Giese.

The manuscript for this book was reviewed by Dr. Adrian Walther. It is
my great fortune to benefit from his experience as a teacher of optics and his
practical knowledge.

Finally, I would like to acknowledge my debt to Professor James E. Holte,
Director of Continuing Education in Science at the University of Minnesota,
who encouraged me to become involved in this project, and to Mrs. Sharon
Johnson, who did the typing.

Minneapolis, Minnesota A. N.
July 1968
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Chapter 1

ELEMENTARY PROPERTIES OF LENSES



2 ELEMENTARY PROPERTIES OF LENSES 1.1

Fig. 1.1

Fig. 1.2

1.1 THE CONCEPT OF AN IMAGE

Let us assume that light travels in straight lines or rays. Suppose that a
person is looking at a tree (Fig. 1.1), and we want to know why he is able to
see the tree. As the figure shows, at least one light ray from each portion of
the tree strikes his eye. However, if his eye received only a single ray from
cach place, the tree would appear very dim; for him to see the tree clearly,
a great many rays must leave each point of the tree (which we call an object)
and come together on the retina of the observer’s eye, as shown in Fig. 1.2.
The intersection point of the rays from the top of the tree is called the image
of the top. The lens of the eye bends or refracts almost all the rays leaving
the object point so that they meet approximately at a single point to form
the image ; the eye’s lens is said to focus the incoming rays. Figure 1.2 shows
only three of a large number of the rays that are focused to produce a bright
sharp image.*

Thus one function of any lens or optical system is to take all the rays
leaving each point of the object and focus them to a point in the image.
We shall see later what we mean by a “‘point’ in the image, and we shall also
see that an optical system must meet other requirements as well.

* Although we have been regarding the human eye as a simple camera, it is actually
a very complicated organ ; even the lens has a rather involved structure.
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1.2 THE LENS EQUATIONS

[t is possible to predict the size and position of the image formed by a thin
lens if we make two reasonable assumptions about the properties of this lens:

1. The lens takes all rays of light parallel to its axis, such as the ray PQ at
a distance o above the axis AA" of Fig. 1.3, and causes them to pass
through a single point F', the focal point or focus of the lens.

| ~.—>le—C ——

Fig. 1.3

2. An object located at point H at a distance f. the focal length. to the right
of F will have an image of exactly the same size; for this condition. we
say that the magnification is unity, and point H is called the unit point.

These two assumptions make it possible to trace the path of the light
ray PQ from point R" on. In the first place, the ray emerges at R on the plane
R'Q" at a distance o from the axis. This plane is the unit plane, correspond-
ing to the position of an image for which the magnification is unity. Although
we do not know the behavior of the light ray as it goes from Q through the
lens to R, we do know that any ray leaving Q must cross the unit plane
specified by H" at a distance H'R" = o from the axis.

The other fact that we know about this ray is that it must pass through
the focal point F’ after it leaves R’ since the original section PQ is parallel
to the axis. Hence the path of this ray is PQR'F'P’ as shown.

Since a ray should trace the same path going in cither direction, we may
follow a second ray from P’ back to P via Q', R, and F in the same fashion
and then reverse its direction to obtain the path shown. This procedure
may be applied to every point on the tree to obtain the image, which we
note is inverted and smaller than the object.

There 1s one other feature in Fig. 1.3 that needs clarification : the size of
the lens, which is shown as being twice as large as the tree. This makes it
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possible for the ray PQ to pass through the lens and reach R'. Actually,
we need not worry about what happens between Q and R': therefore, our
choice of lens diameter can be arbitrary. We have chosen this unrealistically
large lens to make the behavior of the light rays easier to visualize. Also,
as we shall see in a later chapter, the unit planes for a moderately thin lens
are closer together than Fig. 1.3 indicates; the points H and H' lie where
the glass surfaces cross the axis AA". For a very thin lens, H and H' both lie
at the center of the lens.

We should note that Fig. 1.3 shows how we determine P’ by finding the
intersection of two specific rays leaving P and passing through the lens.
We shall see that all the rays leaving the object point P and passing through
the lens will meet again at P'. This is, of course, what we usually want a lens
or optical instrument to accomplish.

Using the distances indicated on the diagram and the relations between
corresponding sides of similar triangles, we can show that

ito_o_i oti_i_o )
S z f ) z f
from which it follows that
zi if’
0o =—= ‘;7
or
72’ = ff". (1.2)

This is Newton’s form of the lens equation.
Let us define the magnification [ as the ratio of the image size to the
object size, or

B = i/o. (1.3)

Then, by using (1.1) and (1.2), we find that

[ z

T=m_ = = — 1.4)

z 0 d S (
and

. si so

I 40 = — ===

J

Hence

p = ijo = sflsf" (1.5
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Further,
I+o0 s 1 sf
i f B s'f
or
j—,+£= 1. (1.6)
s S

This is Gauss™ form of the lens equation, and it is completely equivalent
to (1.2).

Problem 1.1 Obtain Newton’s equation from Gauss’ equation.

A 4

[

60 m
45m |

Fig. 1.4

Example 1.1 Symmetrical Convex Lens

A symmetrical lens of focal length equal to 15m has its unit plane 60 m
from a tree 10 m high. To find the position of the image and the magnifica-
tion (Fig. 1.4), we use (1.6), where f = f” for a symmetrical lens, since parallel
light coming from either side of the lens will be focused in the same way.
Hence

E+;;—7,,~ (1.7)
Then
L1 1 13
s f s 15 60 60
or
s =20m

Using (1.2), we have

IJ\
Il
\
\N
(&}
Il

(¥]
b
Il
wn
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which checks, since s = 15 + z'. By using (1.5), we can calculate the mag-
nification :
o f 20 .1
/;:5/'\:670_§'

We therefore know that the image is reduced (and inverted).

Example 1.2 Symmetrical Concave Lens

To deal with concave lenses or lens systems, we must introduce sign con-
ventions. Those which we shall use at this point are temporary ;: a permanent
set of rules will be established in Chapter 4. The purpose of the present
discussion is to give the reader a feeling for the behavior of systems which
are more complicated than a simple lens, but less involved than those we
shall eventually learn to treat.

Replacing the lens of Example 1.1 with the similar double concave lens
of Fig. 1.5, we use the rules that were implicit in the first example. That is,
s and s are positive as measured from the center of the lens in the direction
away from the center C; however, f is taken as negative for a concave lens.
Also, we shall label the unit planes from now on by using the single letters
H and H'. Hence, by (1.7), we have

Lo 1 -5
s —15 60 60
or
s = —12m.

This means that the image must be to the left of the unit plane H'. To see
how this comes about, we shall introduce the simplification that the lens is
thin enough so that—as mentioned just before Eq. (1.1)-the planes H and
H' fall at the center of the lens.

H,|H,
=
PR
-;,,51,2, —— >
o N ¥l A e F
‘ 2 e \"~'--v~«sﬁ(v !
| r N _ NN |
| [ —15m——Y ‘

I |

<~ 60m———

Fig. 1.5
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We regard a concave lens as one for which the focal points F and F’ are
reversed from Fig. 1.4. Hence the light ray from the object which is parallel
to the axis has its projection pass through F', and the other ray has its
projection pass through F. Thus the image is on the same side of the lens
as the object. The magnification is

p=5s/s=—12/60 = —1/5.
The negative value corresponds to an upright image. Figure 1.4 shows that
z=75m, Z=3m
and
(75)(3) = (—15)?,
which again verifies Newton’s formula.
Problem 1.2 An object with a height of 10 cm is 6 cm to the left of a symmetrical convex

thin lens with a diameter of 5 cm and a focal length of 12 cm. Find the position of the
image and the magnification by (a) making a sketch to scale and (b) using an equation.

Example 1.3 A Compound Lens

The combination of a convex and a concave lens, with focal lengths as
indicated in Fig. 1.6, will form an image of the object shown. To find the
position and size of this image, we shall consider the effect of cach lens
separately. The image in the convex lens has a position s, which Eq. (1.7)
gives as

[ o

s 15 60 20

This image is therefore 20 cm to the right of the first lens and 9 ¢m to the right

of the second one. Using Eq. (1.7) again, this time we have s = —9 ¢m and
Il cm 9cm
fe————60 cm fe e 81 cm——————
o |
|
PR, P e — l —
Object o

f'=15cm S'=-10cm Second imag =

Fig. 1.6 %



