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Preface

Twenty-five years in industry engaged in the practical design of
switched-mode converters and the systems based on them and especially
the multitude of problems we faced convinced me that there has to be some-
thing we do not really understand. After joining the academy, I decided to find
out what are the reasons for the problems we were confronted with almost
daily. After ten years in academy, I understand many of the problems but there
still seems to be a lot to solve. The biggest challenge is to convince the other
designers and academics that the electrical circuits have an internal dynamic
sole which dictates the way the circuits behave and contribute to the behavior of
the systems composed of them. The plain sole has to be known for being able
to understand and predict the behavior and especially to avoid the undesired
consequences such as instability and deteriorated transient performance. The
book is intended to introduce the dynamic features the different converter
topologies may incorporate and the changes the different control methods
and operation modes may create in them in addition to the introduction of
the methods to model analytically the dynamic behavior and to design the
controllers.

Many individuals have helped me to create the book and especially to
understand the extent of the problems and to find the solutions for them:
Professor Dr. D. R. Vij as the consultant editor and the staff of Wiley-VCH
have provided me the opportunity to publish the book and patient guidance
during the process. Dr. Kai Zenger has guided me into the secrets of control
engineering but a lot of work is still left. My former doctorate students Dr. Idris
Gadoura, Dr. Ander Tenno, Dr. Mikko Hankaniemi, Dr. Ali Altowati, and Dr.
Matti Karppanen have contributed substantially to the solutions presented in
the book and especially to their experimental validation. I am very grateful to
my wife Sirpa for her love and patience during the process.
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1
Introduction

1.1
Introduction

The switched-mode converters can be divided into two main classes
such as voltage- (Figure 1.1) and current-sourced (Figure 1.2) converters (1],
where either the output voltage (Figures 1.1aand 1.2b) or output current
(Figures 1.1b and 1.2a) is kept constant[2]. As a consequence, there are
four different main types of converters namely voltage-to-voltage, voltage-
to-current, current-to-current, and current-to-voltage converters having dif-
ferent dynamic features. The most usual converter is the voltage-to-voltage
converter (Figure 1.1a) because most of the energy sources are voltage sources
and the loads current sinks [3]. Sometimes storage batteries are connected
at the output of the voltage-sourced converter, which requires to limiting
the maximum output current for preventing the converters from damage
due to the extremely low internal impedance of a storage battery [4-8]. The
operation at current-limiting mode changes the voltage-to-voltage converter to
voltage-to-current converter (Figure 1.1b). Current-sourced converters can be
used to interface solar arrays and magnetic energy storage systems due to the
current-output nature of those energy sources [9, 10]. Such a basic converter
is naturally the current-to-current converter (Figure 1.2a). If the maximum-
output voltage limiting is used, the current-to-current converter changes to a
current-to-voltage converter (Figure 1.2b).

Every switched-mode converter has a unique dynamic profile or internal
dynamics, which would determine the obtainable transient dynamics and
robustness of stability as well as the converter’s sensitivity to the external
source and load impedances [11-13). The dynamic profile can be changed
by means of certain internal feedback or feedforward arrangements but not
much in practice by means of the feedback-loop control design. The internal
dynamics can be characterized by means of a certain set of open-loop transfer
functions constituting the circuit theoretical two-port parameters known as G
(Figure 1.1a), Y (Figure 1.1b), H (Figure 1.2a), or Z (Figure 1.2b) depending on
the input source and the type of the converter output [11- 15]. The different sets
do characterize only one main type of a converter and are not interchangeable
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but the parameters within the main converter class (i.e., G and Y, H and Z)
can be computed from each other. In addition with the open-loop transfer
functions, certain admittance or impedance parameters have to be defined for
obtaining the full picture of the internal dynamic profile [11].

The term internal means that the transfer functions constituting the sets are
to be such that all the effects of the source and load impedances are removed
from them. The analytical models can be easily derived to be such, when
knowing the correct load yielding the internal models (Figures 1.1. and 1.2).
The dynamic parameter sets for the voltage-to-voltage and current-to-current
converters can also be usually measured by means of frequency response
analyzers but certain internal control modes may change the open-loop
converter such that it cannot operate at the defined load or the required
ideal load is not available. In such cases, a resistive load has to be used
and the internal models have to be solved computationally [11, 16, 17]. It is,
however, extremely important to obtain those internal models because they
only characterize the converter not the source- or load-affected models.

A large number of power electronics text books are available such as [18-26],
which tend to give a comprehensive picture of all the issues related to the design
of switched-mode converters both in AC and DC applications. Therefore, it is
understandable that the dynamic issues are typically not treated adequately.
The exceptions are [27] and [28], which mainly concentrates on the dynamic
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(@) . M (D) . Figure 1.2 Current-sourced
Lin L converter (a) at current-output
> > mode and (b) at voltage-output
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issues. The main deficiency of the dynamic analyses in the aforementioned
text books is the inclusion of the load usually as a resistor in the presented
dynamic models, which may effectively hide the true dynamics and thereby
made the output of the system-level interaction analyses useless. A describing
example of the misunderstanding such a treatment can cause is the prevailing
understanding that the damping of the resonant behavior in a converter
would decrease, when the resistive load is decreased [29]. The phenomenon
is naturally true from the external point of view but the internal dynamics
does not, however, change if the operating point is maintained. Therefore,
it may be a big surprise when the converter behaves nicely in the laboratory
but dynamic problems arise when connected into a real application. Such
an experience might be very common among the industrial switched-mode-
converter designers leading easily to frustration and blaming the customer of
abusing the converter.

The main goal of the book is to provide the reader with the tools by means of
which the challenging dynamics of the systems comprising of switched-mode
converters can be made more understandable and the design of them more
deterministic. It is natural that the key element is the building block of such
a system - the switched-mode converter. The most fundamental issue behind
the ideas provided in the book is the observation that each electrical device

3
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or circuit has its unique internal dynamic profile similar to the psychological
profile of a human being [11]: the profile determines how the device or circuit
would behave as a part of the system under different external interactions and
how it would affect the other subsystems within the overall system. The internal
profile cannot be basically changed by applying external feedback control but
only by providing internal feedback or feedforward from the input, output
and/or state variables constituting the dynamic constellation of the device.
An illustrative example is the application of inductor current to produce the
duty ratio in a peak-current-mode-controlled (PCMC) converter [30], which
changes profoundly the converter dynamics compared to the corresponding
direct-duty-ratio or voltage-mode-controlled (VMC) converter, where the duty
ratio is produced using a constant ramp voltage: The resonant nature of the
VMC converter disappears, the input-noise attenuation may be substantially
increased, the internal open-loop output impedance is increased but the
nonminimum nature if existing in the VMC converter would not be removed.
A multitude of similar examples can be given, which actually proves the
existence of such a profile.

During the time of writing the book, the analog control is still dominating
but digital control with all the opportunities involved in it is evidently coming
and may dominate the future converter applications. The fact is, however,
that the power stage does not change and, therefore, the basic dynamic profile
related to the power stage does not change. The digital control with the physical
resolution and time limitations may cause more dynamic problems or equally
also improvements, which can be revealed and analyzed using the methods and
information based on the corresponding continuous-time processes treated in
this book.

The issues related to the dynamic profiles are briefly discussed and clarified
in the subsequent subsections in order to make the reader familiar with
the issues treated in the subsequent chapters. Even if we discussed on the
current-sourced converters in the beginning of the chapter, we will limit our
discussions on the voltage-sourced converters within the rest of the book.

1.2
Dynamic Modeling of Switched-Mode Converters

The dynamic analysis of the voltage-output switched-mode converters dates
back to the early 1970s [31], when the foundation for the state-space-averaging
(SSA) method [32] was laid down. It was observed that the dynamics associated
with the direct-duty-ratio or VMC converter in continuous conduction mode
(CCM) could be quite accurately captured up to half the switching frequency
by averaging the converter variables within a switching cycle and computing
the small-signal models from the corresponding averaged state space by
means of linearization. The dynamic behavior of a converter was represented
by means of the canonical equivalent circuit shown in Figure 1.3 for the
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Figure 1.3  Small-signal
canonical equivalent circuit for a
two-memory-element converter.

two-memory-element converters, where the different circuit elements are
defined according to a specific converter. It may be obvious that the equivalent
circuit in Figure 1.3 provides real physical insight into the dynamic processes
inside the converter and has, therefore, promoted the acceptance of the
theoretical method providing the model. Similar equivalent circuit to Figure 1.3
can also be naturally constructed for the higher order converters.

The first attempt to model the dynamics associated with a VMC converter
operating in discontinuous mode (DCM) is presented in [33] but it failed to
capture the true full-order dynamics due to the lack of proper understanding of
the dynamical processes inside a converter. The accurate small-signal models
for the DCM operation were developed in the late 1990s [34]. A unified method
based on the SSA method was finally developed in the early 2000s providing
consistent modeling tools for fixed and variable-frequency operation both
in DCM, CCM, and even in the combination of them [35]. The pulsewidth
modulation (PWM) process would not produce linear responses but only
at rather low frequencies (i.e., ~1/10 of switching frequency) for sinus
excitations [36-38]. Therefore, the responses measured through the PWM
input (i.e., control-to-input and control-to-output) may have more phase lag
than the models derived using the SSA method would predict. Further studies
on the topic are needed in order to find the correct dynamic behavior of the
converter also at the frequencies approaching half the switching frequency.
This is important because the desired loop crossover frequencies tend to
approach ever higher frequencies beyond those typically used in the past.

The small-signal models of the VMC operation are important because the
other control modes would usually only change the dynamics associated with
the duty-ratio generation and, therefore, the corresponding dynamic models
can be derived from the VMC state-space representation by substituting the
perturbed duty ratio with the developed relation between the new control
variable and the duty ratio known as duty-ratio constraints [22].

In reality, the controlled variable is usually the length of the on-time of the
main switch [35]. Under fixed-frequency operation, the dynamical information
incorporated into the on-time is equal to that of the duty ratio because of
constant cycle time. Under variable-frequency operation, the duty ratio is
nonlinear and, therefore, the on-time has to be used as the control variable
under the VMC mode of operation. A comprehensive survey of the modeling
issues can be found from [39].
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