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Preface

Mechanical microresonators are fundamental components in a host of
MEMS applications covering the automotive sector (safety systems,
stability and rollover, occupant detection, tire pressure monitoring, bio-
metric sensors for comfort programs), the telecommunication industry
[especially the radio-frequency (RF) domain with implementations such
as switches, tunable capacitors and mechanical filters implemented in
wavelength division multiplexing (WDM) and mobile communication,
variable attenuators in cell phones, frequency reference, digital
micromirror devices (DMD), laser tuning or radar systems], the bio/
medicine domain [detection and tracking of various substances includ-
ing hazardous and explosive ones at the femtogram level, magnetic
resonance imaging (MRI), surgical instrumentation for corneal resur-
facing or hair/tattoo removal], the material/surface characterization
area [scanning probe microscopy (SPM) and atomic force microscopy
(AFM), resonant strain gauges, residual stress measurements], and
motion sensing (gyroscopes and other resonant accelerometers for
navigational systems and platform stabilization). Applications of
mechanical micro-resonators are also implemented in virtual reality,
people-to-device communication (gloves, helmets and haptic systems
for remote surgical intervention), optical beam scanners, laser printers,
inertial mouse devices in computers, CD players, video cameras, fluid
density and mass/pressure flow sensors, low acceleration (low-g) sen-
sors, and light modulators.

Based on the resonant beam technology, mechanical microresonators
are capable of high accuracy and sensitivity (order of magnitudes over
conventional-technology counterparts), very good signal-to-noise (S/N)
ratio, relatively large bandwidth, compatibility with the integrated-
circuit (IC) technology, simplified digital interface, and miniaturiza-
tion. The last feature in this enumeration is crucial, particularly in
detecting minute amounts of substances (at the cell level in biodetec-
tion, for instance) where very small quantities of extraneous matter can
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be detected only by very small mechanical resonators which operate at
frequencies in the gigahertz domain.

The large spectrum of current and foreseeable micromechanical
resonator applications has sparked a wide interest in advancing the
practical and theoretical knowledge in this area. Inroads have been
made at all component levels that are involved in developing high-
performance mechanical resonator systems, including the fabrication,
electronic, mechanical, and control subdomains. This book is dedicated
to the mechanical modeling and design of microresonators. The book
addresses the main methods and procedures which can be utilized in
evaluating the behavior of mechanical microresonators by means of
lumped- and distributed-parameter modeling. It also contains a
database offering comprehensive characterization of mechanical res-
onator components and systems (including hinges, cantilevers and
bridges)—many of them novel—in the frequency domain. It is hoped
that professionals with various expertise levels and backgrounds, who
are involved with the study, research, and development of mechanical
microresonators will find this book useful. Many fully solved, real-life
resonator examples accompany and complement the basic material.
Although many of today’s mechanical resonators are fabricated in the
nanometer range, the prefix micro has been used in this book to keep
the nomenclature unitary and short-form.

Chapter 1 introduces the main traits of modeling and designing
mechanical microsystems which operate at resonance. Single- and
multiple-degree-of-freedom systems are characterized in terms of their
free and forced response. The damping in mechanical microsystems is
discussed including loss mechanisms such as those produced by fluid-
structure interaction and internal dissipation. Methods enabling us to
formulate the dynamic equations of motion and to determine the reso-
nant response, both exact and approximate, are also presented in
Chapter 1, which concludes with notions of mechanical-electrical analo-
gies, transfer functions, complex impedances, and micromechanical
resonator filters.

Chapter 2 focuses on basic components that are the backbone of
mechanical microresonators, such as line members, circular rings, thin
plates, and membranes. Lumped-parameter modeling is presented
together with the methods enabling derivation of stiffness properties
(Castigilano’s displacement theorem) and inertia fractions (Rayleigh’s
principle), which are usually combined to yield the relevant resonant
frequencies. Basic microcantilever shapes such as constant cross-
section, trapezoid and corner-filleted are fully defined in terms of their
axial, torsional, and bending resonant frequencies. The distributed-
parameter modeling approach targets the resonant characterization of
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line members under the action of axial loads, circular rings, thin plates
and membranes.

Chapters 2 and 4 are dedicated to microhinges, microcantilevers, and
microbridges. These compliant members can be utilized as either stand-
alone resonator systems (such as in mass detection or switches) or
components of more complex resonators (such as elastic suspensions).
The lumped-parameter stiffness, inertia and corresponding resonant
frequencies are derived for various configurations including paddle, fil-
leted (circular and elliptic), notched, hollow, and multimorph (sand-
wiched). Generic formulations are also provided which facilitate
modeling and designing of components with geometric profiles other
than the ones presented in these chapters.

Chapter 5 studies resonant mechanical microsystems such as beam
type, spring type, microgyroscopes, tuning forks, and microaccelerom-
eters. Various models are proposed and compared, which characterize
the dynamic response and performance of mechanical microresonators
at different levels of accuracy. The main methods of transduction
(actuation and/or sensing) which are implemented in microresonator
applications such as electrostatic, electromagnetic, piezoelectric and
piezomagnetic are also discussed in Chapter 5.

The final chapter, Chapter 6, focuses entirely on microcantilever and
microbridge systems which are designed for mass detection. Static
detection of extraneous substance attachment is treated here but the
emphasis falls on resonant methods and devices enabling mass detec-
tion by means of resonant frequency shift monitoring.

The book contains quite a few novel designs and associated models,
and although a lot of effort and time has been spent at making sure that
the mathematical apparatus is correct, errors might have slipped in—
I would appreciate signaling of such occurrences.

My thanks go to Dr. Rob Ilic of Cornell NanoScale Facility for allow-
ing me to present pictures of his work on microresonators, for his
enthusiastic and thorough review of the chapter on mass detection, and
for the precious suggestions on the introduction to this chapter, which
have been included almost ad literam.

NicoLAE LoBONTIU
Cluj-Napoca, Romania
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Chapter

Design at Resonance of
Mechanical Microsystems

1.1 Introduction

This chapter is an introduction to the main aspects encountered in
modeling and designing mechanical microresonators.

Aside from the technological reasons for realizing systems that int-
egrate the mechanical structure and the associated silicon/semiconduc-
tor electronic circuitry, the drive toward smaller-scale, nano-domain
mechanical resonators is motivated by the need for pushing the limits
to the resonant frequencies in the gigahertz domain. It is known that
the stiffness of a mechanical resonator varies with the inverse of the
length (because the basic definition of stiffness is force divided by
length):

.1

k7

(1.1)

and that the resonant frequency is proportional to the square root of
the stiffness:

o, ~Vk (1.2)

As a consequence, increasing the resonant frequency of a mechanical
device implies miniaturization, and therefore very high frequencies
are achieved by very small resonator dimensions. In addition, as this
chapter discusses, higher resonant frequencies (which are achieved
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(a) (b)

Figure 1.1 Single-component mechanical microresonators: (a) cantilever; (b) bridge.

(@ (b) (©)

Figure 1.2 Tuning-fork microresonators: (a) classical; (b) trident; (c) double-ended.

with small-dimension resonators) also contribute to increasing the
quality factor of a system, which is a measure of its resonant perfor-
mance. Smaller is also better, as Chap. 6 will demonstrate, in detecting
minute amounts of deposited substances as the capacity of capturing
the effects of mass at the cell level is inversely proportional to the geo-
metric dimensions of a mechanical resonator.

Constructively, the mechanical microresonators can be cantilevers,
as sketched in Fig. 1.1q; bridges, as in Fig. 1.1b; tuning forks, as shown
in Fig. 1.2a, b, and c. Or they can be of a more complex geometry, such
as the lateral resonator design with folded-beam suspensions illus-
trated in Fig. 1.3. More details regarding these mechanical resonators,
as well as more resonator structures, are presented in subsequent
chapters of this book.

This chapter analyzes the main aspects of single- and multiple-
degree-of-freedom mechanical microresonators by discussing the mod-
els that are utilized to characterize and design these devices.
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Figure 1.3 Lateral mechanical microresonator with folded-beam suspensions.

1.2 Single-Degree-of-Freedom Systems

Many mechanical microresonators can be modeled as single-degree-of-
freedom systems. A microcantilever, for instance, such as the one illus-
trated in Fig. 1.4, may only vibrate in bending and therefore can be
modeled as a single-degree-of-freedom member by means of lumped-
parameter properties (as shown in subsequent chapters in this book),
namely, by allocating mass and stiffness fractions at the free end about
the single motion direction. The free response of a mechanical system
determines the resonant frequency in either the presence or the absence
of damping. The forced response reveals the behavior of an undamped
or damped mechanical system under the action of a sinusoidal (most
often) excitation. In mechanical resonators, the phenomenon of reso-
nance is important, and in such situations the excitation frequency
matches the natural (resonant) frequency of the system.

1.2.1 Free response

For a single-degree-of-freedom (single-DOF) system formed of a body
of mass m and a spring of stiffness k, such as the one in Fig. 1.5, the
dynamic equation of motion is

mx+kx=0 (1.3)
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paddle cantilever

anchor

translatory motion

Figure 1.4 Microcantilever as a single-degree-of-freedom system.
m
-

Figure 1.5 Single-degree-of-freedom mass-spring system.

The solution to Eq. (1.3) is

x(t) = % sin(w .t) + x, cos (@,t) (1.4)

where the natural (or resonant) frequency is

o, =~/% (1.5)

and the initial displacement and velocity conditions are

x0=x GF| =i (1.6)

Similarly, the equation of motion of a single-DOF system formed of a
mass and a dashpot (mass-damper combination with viscous damping),
such as the one in Fig. 1.6, is

mx+cx+kx=0 (1.7

and the solution to this homogeneous equation can be expressed as
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Figure 1.6 Single-degree-of-freedom mass-dashpot system.

x(t) = [xocos(mdt) + (i, + Enxg) / mdsin(a)dt)]e‘gwt (1.8)
where
0, =V1-Ew, (1.9)

is the damped frequency of the system and the damping ratio & is de-
fined as

&:c/cczc/(%/%):c/(mer) (1.10)

by means of the critical damping factor c.. The solution to Eq. (1.8) de-
scribes the natural response of the vibratory system in the absence of
the external forcing.

Depending on whether the critical damping factor is less than,
equal to, or larger than 1, the vibrations are called, respectively,
underdamped, critically damped, or overdamped.

1.2.2 Forced response — the resonance

When a force defined as
f(t) = Fsin(ot) (1.11)

acts on the mass shown in Fig. 1.6, then Eq. (1.3) changes to

mx+cx+kx=f(t) (1.12)

The general solution of Eq. (1.12) is the sum of a complementary solu-
tion (which describes the system’s vibration at the natural frequency)
and a particular solution (which is vibration-generated at the driving
frequency). The latter part of the solution is also called the steady-state
solution and is generally analyzed in the frequency domain by studying
its amplitude and phase angle.
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Often Eq. (1.12) is written in the alternate form:

'5c+22‘;wrx+m%x= Esin(wt) (1.13)
m

The solution to Egs. (1.12) and (1.13), as shown by Timoshenko,!
Thomson,2 or Rao,? is the sum of the homogeneous solution—Eq. (1.8)
—and a particular solution which is of the form:

x,(t) = Xsin(ot—@) (1.14)

where the amplitude X is

Xst Xst

X = = (1.15)
\/(1 —mo?|k)2+(colk)® VA - 22 + (2¢p)2
with the frequency ratio p being defined as
= @

p= o (1.16)

and the phase angle between excitation and response ¢ as

2

¢ = arctan I—_é‘;Lz (1.17)

The particular solution of Eq. (1.14) is of special importance as it de-
scribes the forced response of a vibratory system. In Eq. (1.15) the static
displacement is X;; and is defined as F'/ k. Figures 1.7 and 1.8 are plots
of the amounts X/X,; and ¢ as functions of B for various values of &.

As Fig. 1.7 indicates, when the driving frequency equals the resonant
frequency (B = 1), the amplitude ratio reaches a maximum, which, for
very small damping ratios, goes to infinity. Even in the presence of
moderate damping, the amplitude at resonance is large, and this fea-
ture is utilized as a working principle in mechanical microresonators.

At resonance, when B = 1, the amplitude ratio of Eq. (1.15) becomes

Xr 1
= 1.18
which gives an amplitude of
FO
X 1.19)



