&md@@&g of Logic in
Efﬁg al Intelligence
"‘Es‘%@gﬁ&mméﬁ@

i

7{0/ §-62

H 2 76.2
2

HANDBOOK OF LOGIC IN
ARTIFICIAL INTELLIGENCE
AND LOGIC PROGRAMMING

Deduction Methodologies

LT

Edited by E9462992
DOV M. GABBAY -

and

C. J. HOGGER
Imperial College of Science, Technology and Medicine
London

and
J. A. ROBINSON

Syracuse University, New York

Volume Co-ordinator

J. SIEKMANN
DFKI/University of Saarland, Saarbriicken

CLARENDON PRESS * OXFORD
1994

Oxford University Press, Walton Street, Oxford OX2 6DP
Oxford New York Toronto
Delhi Bombay Calcutta Madras Karachi
Kuala Lumpur Singapore Hong Kong Tokyo
Nairobi Dar es Salaam Cape Town
Melbourne Auckland Madrid
and associated companies in
Berlin Ibadan

Oxford is a trade mark of Oxford University Press

Published in the United States by
Oxford University Press Inc., New York

© The contributors listed on pp xv, 1994

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior permission in writing of Oxford
University Press. Within the UK, exceptions are allowed in respect of any
fair dealing for the purpose of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988, or
in the case of reprographic reproduction in accordance with the terms of
licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction outside these terms and in other countries should be sent to
the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not,
by way of trade or otherwise, be lent, re-sold, hired out or otherwise
circulated without the publisher’s prior consent in any form of binding
or cover other than that in which it is published and without a similar
condition including this condition being imposed
on the subsequent purchaser.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
(Data available)

ISBN 0 19 853746 8
Typeset using LaTeX by Jane Spurr
Printed in Great Britain by

Bookcraft (Bath) Ltd
Midsomer Norton, Avon

HANDBOOK OF LOGIC
IN ARTIFICIAL INTELLIGENCE
AND LOGIC PROGRAMMING

Editors

Dov M. Gabbay, C. J. Hogger, and J. A. Robinson

HANDBOOKS OF LOGIC IN COMPUTER SCIENCE
and

ARTIFICIAL INTELLIGENCE AND LOGIC
PROGRAMMING

Executive Editor

Dov M. Gabbay

Administrator

Jane Spurr

Handbook of Logic in Computer Science

Volume 1 Background: Mathematical structures

Volume 2 Background: Computational structures

Volume 3 Semantic structures

Volume 4 Semantic modelling

Volume 5 Theoretical methods in specification and verification
Volume 6 Logical methods in computer science

Handbook of Logic in Artificial Intelligence and
Logic Programming
Volume 1 Logical foundations
Volume 2 Deduction methodologies
Volume 3 Nonmonotonic reasoning and uncertain reasoning
Volume 4 Epistemic and temporal reasoning
Volume 5 Logic programming

Preface

The preface to Volume 1 concluded with the belief that as a result of its
interaction with computing and AI, logic is going to move to the next
stage of its evolution. Of particular importance in accelerating this process
is its attempts to cater for the needs of computationally handling human
reasoning and activity.

We would like to share with the reader our vision of this evolution and
interaction and how we see the handbooks as contributing to its realization.

Given an application area which may be a possible consumer for logical
analysis, there are two aspects to a successful use of logic to serve the
application.

The application area must be analysed and broken into distinct compo-
nents, which are the moving atomic components of the application, ready
for a suitable representation and logical analysis. The choice of atomic
units may depend on the purpose and environment of the application.

Suitable representations and suitable logics need to be chosen devised
and developed, which can naturally reflect the operations and movements
intrinsic to the applications. In any real application there are many logics
involved, formalizing different aspects of it. There are temporal aspects,
modal aspects, various nonmonotonic aspects, etc. These aspects and their
logics are naturally interleaved and combined in the application.

Current research activity pays a great deal of attention to methodologies
of different representations and logics. An enormous amount of energy is
spent on comparing logics in strength and properties and on introducing
new logics, their proof theory and automated deduction. It is now time to
pay more attention to how different logics and deduction methodologies can
be combined. In any real AI application, the dominant mechanisms—the
mechanisms reflecting intelligence—are the ones which combine and switch
from one logic to another.

In my opinion, the very question of whether logic can successfully and
fruitfully be applied in AI hinges on our ability to deliver well integrated
combined multilogic systems.

To focus our thoughts, let us take a concrete example. Consider a
university Head of Department planning the distribution of lectures and
courses. Among other considerations, there is reasoning involving whether
to hire a new temporary lecturer. Of course funds are needed but how

vi Preface

much funds are available depends on the success of research project ap-
plications. In practice a good candidate might be lost if not approached
immediately, and so a sensible Head of Department might make an offer
based on expected funds, taking the risk that no funds arrive. In fact, the
university may have some guidelines on how such ‘risks’ may be taken.

This simple and realistic example involves several types of reasoning
and automated deduction machines:

1. temporal logic;

2. resource considerations and planning;

3. modal logic;

4. two-dimensional temporal logic and updates, and its relation to ac-
tions;

5. metalevel considerations.

The modal logic has to do with considerations of possible availability
of funds. The modal logic must be combined with the temporal logic with
possibly some metalevel aspects, to allow us to express the guidelines. The
two-dimensional temporal logic is needed to describe a possible planned
future, as seen from the past, on the basis of which a past action was
taken.

It is clear that the dominant logical feature for such an application is
the way the pure components are combined. Even if they are all expressed
in classical logic, they might not necessarily be expressed in the same de-
ductive framework for classical logic. Resolution may be most conveniently
used for the modal considerations while Horn clause logic may be used for
the temporal reasoning, because it involves a strong persistence property,
and hence can be formalized in the Horn fragment of classical logic.

The above shows that in fact we have to understand integration, or
combination in the widest sense, not only combining different logics but
also combining different deduction methodologies, of possibly the same
logic.

In addition, we should regard metalevel vs object level communication
as a special kind of combining logics.

I believe that the availability of good deduction methodologies for vari-
ous logics will be a decisive factor in the applicability of logic in AL These
good deduction methodologies are valuable not only because of the need for
practical implementable systems, but also for their role in the conceptual
level, facilitating the combination of logics and logical system design.

I am therefore happy to present to you Volume 2 of the Handbook on
Deduction Methodologies.

This volume contains chapters on the central topics of automated de-
duction.

Further chapters on automated deduction for non-classical logics can
be found in later volumes of this Handbook, for example the chapter of

Preface vii

L. Farinas del Cerro and A. Herzig on Resolution methods for temporal
logics, in Volume 4.

I hope that this volume will make it easier to proceed with what I con-
sider to be the next major step in automated deduction, that of combining
deduction methodologies.

The Handbooks

The Handbook of Logic in Artificial Intelligence and Logic Programming
and its companion, the Handbook of Logic in Computer Science, have been
created in response to a growing need for an in-depth survey of the appli-
cation of logic in AT and computer science.

We see the creation of the Handbook as a combination of authoritative
exposition, comprehensive survey, and fundamental reasearch exploring the
underlying unifying themes in the various areas. The intended audience is
graduate students and researchers in the areas of computing and logic, as
well as other people interested in the subject. We assume as background
some mathematical sophistication. Much of the material will also be of
interest to logicians and mathematicians.

The tables of contents of the volumes were finalized after extensive dis-
cussions between Handbook authors and second readers. The first two
volumes present the background logic and mathematics extensively used
in artificial intelligence and logic programming. The point of view is ap-
plication oriented. The other volumes present major areas in which the
methods are used. These include: Volume 1—Logical foundations; Volume
2—Deduction methodologies; Volume 3—Nonmonotonic reasoning and Un-
certain reasoning; Volume 4— Epistemic and temporal reasoning; Volume
5—Logic programming.

The chapters, which in many cases are of monographic length and scope,
are written with emphasis on possible unifying themes. The chapters have
an overview, introduction, and main body. A final part is dedicated to
more specialized topics.

Chapters are written by internationally renowned researchers in their
respective areas. The chapters are co-ordinated and their contents were dis-
cussed in joint meetings. Each chapter has been written using the following
procedures:

1. A very detailed table of contents was discussed and co-ordinated at
several meetings between authors and editors of related chapters.
The discussion was in the form of a series of lectures by the authors.
Once an agreement was reached on the detailed table of contents, the
authors wrote a draft and sent it to the editors and to other related
authors. For each chapter there is a second reader (the first reader is
the author) whose job it has been to scrutinize the chapter together

viii

Preface

with the editors. The second reader’s role is very important and has
required effort and serious involvement with the authors.

Second readers for this volume are:

Chapter 1: Automated reasoning—M. Stickel

Chapter 2: General unification theory—J. P. Jouannaud

Chapter 3: Induction—D. Kapur

Chapter 4: Higher-order features, types and fixpoints—A. Mycroft
Chapter 5: Metalangauges, reflection principles and self-reference—
K. Konologe and R. Weyrauch

Chapter 6: Classical vs non-classical logic—R. A. Kowalski and D.
McDermott

. Once this process was completed (i.e. drafts seen and read by a large

enough group of authors), there were other meetings on several chap-
ters in which authors lectured on their chapters and faced the criti-
cism of the editors and audience. The final drafts were prepared after
these meetings.

. We attached great importance to group effort and co-ordination in the

writing of chapters. The first two parts of each chapter, namely the
introduction-overview and main body are not completely under the
discretion of the author, as he/she had to face the general criticism
of all the other authors. Only the third part of the chapter is entirely
for the authors’ own personal contribution.

The Handbook meetings were generously financed by OUP, by SERC

contract SO/809/86, by the Department of Computing at Imperial College,
and by several anonymous private donations.

We would like to thank our colleagues, authors, second readers, and

students for their effort and professionalism in producing the manuscripts
for the Handbook. We would particularly like to thank the staff of OUP for
their continued and enthusiastic support, and Mrs Jane Spurr, our OUP
Adminstrator for her dedication and efficiency.

London D. M. Gabbay
November 1993

Contents

List of contributors XV

Logical basis for the automation of reasoning:
Case studies 1
Larry Wos and Robert Veroff

1 Introduction 1
2 The clause language paradigm 4
2.1 Components of the clause language paradigm 4
2.2 Interplay of the components 6
3 A fragment of the history of automated reasoning from

1960 to 1990 8
4 Answering open questions 11
4.1 Equivalential calculus 12
4.2 Combinatory logic 14
4.3 Sentential calculus 20
5 Relation to logic programming and to person-oriented rea-
soning 21
5.1 Logic programming 21
5.2 Person-oriented reasoning 24
6 Challenge problems for testing, comparing, and evaluating 25
7 Current state of the art: Basic research problems to solve 30
8 Programs, books, and a problem database 32
9 Summary and the future 35
Unification theory 41
Franz Baader and Jorg Siekmann
1 Outline 41
2 What is E-unification? 42
3 Unification in the empty theory 47
3.1 An informal description of Robinson’s algorithm 48
3.2 Motivation for using ()-unification 49
3.3 Efficient algorithms for (-unification 51
4 Unification in non-empty theories 56
4.1 Motivation for using E-unification 58
4.2 Single equations versus systems of equations 59
4.3 A closer look at the signature 61

4.4 Restricted versus unrestricted instantiation ordering 62

ix

ot

4.5

Contents

Notions and notation revisited

Unification results for special theories
General results

6.1
6.2
6.3

General E-unification
Semantic approaches to unification
The combination problem

Related areas of research

7.1
7.2
7.3

Higher-order unification
Unification in sort theories
Constraint solving

Applications of unification

Mathematical induction
Christoph Walther

1
2

Introduction
Admissible specifications and theories

2.
2.2
2.3
2.4
2.5
2.6

Data structures and algorithms
Theorem proving

Induction

Expanded theories

Incomplete specifications
Summary

Computing induction axioms

3.1
3.2
3.3

3.4
3.5

3.6
3.7

Defining induction axioms

The induction heuristic

Modification of induction axioms by domain
generalization

Comparing induction axioms

Modification of induction axioms by range
generalization

Modification of induction axioms by separation
Summary

Proving well-foundedness

4.1
4.2
4.3
4.4

4.5

Termination of algorithms

Proving termination by induction lemmata
Proving termination with argument bounded
algorithms

Computing well-founded domain and

range generalizations

Summary

Proving induction formulas

5.1
5.2

The basic theorem prover
Symbolic evaluation

63
65
71
72
80
85
91
91
96
99
101

127

128
132
132
136
138
141
142
145
147
147
154

155
161

168
172
175
177
177
180

185

192
196
197
197
200

Contents

5.3 Applying induction hypotheses

5.4 Using lemmata

5.5 Summary

Generalizing formulas

6.1 Computing generalizations by inverse inference
rules

6.2 Inverse substitution

6.3 Inverse functionality

6.4 Inverse weakening

6.5 Inverse splitting

6.6 Inverse replacement

6.7 Inverse modus ponens

6.8 Summary

Higher order logic
Danzel Leivant

1
2

Introduction

The expressive power of second order Logic

2.1 The language of second order logic

2.2 Expressing size

2.3 Defining data types

2.4 Describing processes

2.5 Expressing convergence using second order
validity

2.6 Truth definitions: the analytical hierarchy

2.7 Inductive definitions

Canonical semantics of higher order logic

3.1 Tarskian semantics of second order logic

3.2 Function and relation formulations

3.3 Normal forms

3.4 Finite order logic

3.5 Functional types

3.6 Formulas as higher order functions

3.7 Truth definitions revisited

Proof theory

4.1 Basic formalisms

4.2 Additional set existence principles

4.3 Constructive finite order logics

4.4 Normalization and the subformula property

Ontology

5.1 The gulf between first order and second order logic

5.2 Lindstrom’s and Quine’s tests

5.3 Slipping from first to second order logic

xi

202
206
207
208

208
209
213
214
216
219
223
225

229

230
231
231
232
234
236

237
238
241
243
243
243
244
245
246
247
248
250
250
252
254
255
257
257
259
261

xii

5.4

5.5
5.6

Contents

Higher order logic as mathematics: Henkin’s
semantics

Henkin completeness for full finite order logic
Finite order logic as a second order theory

Restricted higher order logic

6.1

6.2
6.3
6.4

Restricted expressiveness 1: Monadic second order
logic

Restricted expressiveness 2: Fixpoint logics
Restricted semantics: Weak second order logic
Predicative logic: Restricted comprehension

Mathematical practice

7.1
7.2

7.3
7.4

Second order axioms vs. first order schemas

Higher order aspects of set theory: from higher order
to first order and back

Analysis and reductive proof theory

Speed-up

Higher order logic in relation to computing and program-

ming

8.1
8.2

8.3

8.4

Higher order data and types

The computational nature of higher order natural de-
duction

Higher order logic in the meta-theory of formal sys-
tems

Higher order logic and computational complexity

Meta-languages, reflection principles, and self-
reference
Donald Perlis and V. S. Subrahmanian

1

Introduction

1.1 Aims

1.2 Aboutness and self-reference

1.3 Truth and paradoxes

1.4 Ideal, pseudo-ideal and situated reasoning
Formal definitions and difficulties

2.1 Meta-languages and Tarski hierarchies

2.2 Reflection principles

2.3 Fixed points

Applications

3.1 Ideal and pseudo-ideal approaches (to knowledge)
3.2 Situated temporal reasoning and self-reference
3.3 Logic programming

3.4

Naive vs. amalgamated LP

Future developments

262
265
267
268

269
270
272
274
279
279

282
285
288

293
293

296

298
299

323

323
323
324
327
329
331
331
333
338
339
339
341
344
351
353

5

Contents

4.1 Agent referential semantics
Conclusions

Classical vs non-classical logics (the universal-
ity of classical logic)

D. M. Gabbay
1 Introduction—the debate
2 What is a logical system?—the challenge
2.1 Logical systems as consequence relations
2.2 Logical systems as algorithmic proof systems
2.3 Logical systems as algorithmic structured consequence
relations
2.4 Logical systems as labelled deductive systems
2.5 Aggregated systems
2.6 Practical reasoning systems
3 How to construct a logic for an application: the case studies
3.1 Case study 1: temporal logic in two-sorted classical
logic
3.2 Case study 2: priority logic and PROLOG
4 Algebraic LDS: a unifying solution
5 Reductions to classical logic: the options
6 Translations into classical logic: technical case study
7 Linked predicate languages
7 Linked predicate languages: classical logic as a target for
translation
8 The meta-language HFP: computational classical logic
9 Semi-algebraic semantics for propositional logics
10 An automated universal translator into classical logic
10.1 The translation steps
10.2 The SCAN algorithm
11 Conclusion: the current state of the debate
Index

xiii

353
355

359

359
366
368
371

372
374
382
384
385

388
395
403
427
436
443

443
451
465
478
479
483
495

501

Logical Basis for the Automation of

Reasoning: Case Studies *
Larry Wos and Robert Veroff

Contents
1 Introduction 1
2 The clause language paradigm 4
2.1 Components of the clause language paradigm 4
2.2 Interplay of the components 6
3 A fragment of the history of automated reasoning from 1960 to
1990 . . . L 8
4 Answering open questions 11
4.1 Equivalential calculus 12
4.2 Combinatory logic 14
4.3 Sentential calculus L. 20
5 Relation to logic programming and to person-oriented reasoning 21
5.1 Logic programming 21
5.2 Person-oriented reasoning 24
6 Challenge problems for testing, comparing, and evaluating . . 26
7 Current state of the art: Basic research problems to solve . . . 30
8 Programs, books, and a problem database 32
9 Summary and the future L. 35

1 Introduction

With the availability of computers in the late 1950s, researchers began
to entertain the possibility of automating reasoning. Immediately, two
distinctly different approaches were considered as the possible basis for
that automation. In one approach, the intention was to study and then
emulate people; in the other, the plan was to rely on logic. In this chapter,
we focus mainly on the latter, for logic has proved to provide an excellent
basis for the automation of reasoning.

*This work was supported by the Office of Scientific Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38.

2 Larry Wos and Robert Veroff

Among the various paradigms for automated reasoning that rely on
logic, in this chapter we concentrate on the clause language paradigm [Wos,
1987; Wos et al., 1992]. In addition to relying on the use of clauses to repre-
sent information, the clause language paradigm—in contrast to paradigms
based on logic programming—relies on the retention of deduced conclusions
and on the use of a variety of inference rules, diverse strategies, and a num-
ber of additional procedures. The clause language paradigm is discussed
in detail in Section 2.

The current state of the clause language paradigm, which continues to
evolve, results from the objective of using automated reasoning for research
in mathematics and logic. Indeed, the pursuit of that objective prompted
numerous experiments that in turn revealed the need for the various compo-
nents of the paradigm. To provide a perspective for measuring the progress
that has occurred in the preceding decade, and to illustrate graphically the
value of experimentation, we present in Section 3 experiments that directly
influenced the evolution of the clause language paradigm.

The applications of automated reasoning include research in mathemat-
ics and logic, program verification and synthesis, circuit design and valida-
tion, and, in general, tasks that depend on logical reasoning. Substantial
evidence exists that automated reasoning now occupies a significant po-
sition in science, for its use has led to answering open questions in finite
semigroups [Winker et al., 1981], in equivalential calculus [Peterson, 1977;
Kalman, 1978; Wos et al., 1984], in combinatory logic [Smullyan, 1985;
Smullyan, 1987; Wos and McCune, 1988], and in sentential calculus [Scott,
1990]. To assess the scope and significance of the various contributions, we
discuss in Section 4 a number of the questions that have been answered by
relying heavily on an automated reasoning program.

To gain an insight into the possible reasons for the cited successes and
also gain an appreciation for how a program based on the clause language
paradigm complements the mechanisms on which people rely, we compare
in Section 5 the clause language paradigm with both logic programming
and person-oriented reasoning.

The long-term objectives for automated reasoning all focus on provid-
ing an automated reasoning assistant. At the more mundane end of the
spectrum, the envisioned assistant can be instructed to function as a log-
ical calculator, carrying out assignments that only barely require reason-
ing. At the more intriguing end of the spectrum, this assistant can be
instructed to function as a colleague, self-analytically choosing inference
rules and strategies, modifying an attack based on current performance,
and examining results to highlight those that offer the most significance.
The assistant will offer interactive mode, batch mode, and ‘collaborative
mode’—the latter referring to the style that is present when working with
a research colleague in which interaction occurs, but only at the highest
level.

Logical Basis for Automating Reasoning 3

Despite the marked advances of the preceding decade, there remain
many obstacles to overcome before automated reasoning reaches its full
potential. In the obvious sense, each obstacle is a source of significant
research in the field. Although some of the following obstacles do not
directly apply to every paradigm for the automation of reasoning, each in
some manner merits study.

1. Clause Generation: The reasoning program draws far too many
conclusions, many of which are redundant and many of which are
irrelevant even though they are not redundant.

2. Clause Retention: The program keeps too many deduced clauses
(too many conclusions) in its database of information.

3. Size of the Deduction Steps: The inference rules do not take
deduction steps (steps of reasoning) of the appropriate size.

4. Inadequate Focus: The program gets lost too easily.

5. Metarules: No adequate guidelines exist for selecting the appropri-
ate representation, inference rule(s), strategy or strategies, transfor-
mations for canonicalization (demodulators), and type of information-
discarding procedure (subsumption) to be employed. This obstacle
focuses on guidelines for the effective use of an automated reasoning
program.

6. Database Indexing: The program requires too much time to find
the appropriate information in its database. This obstacle focuses on
implementation.

Far more experimentation is required for the continued evolution of the
clause language paradigm and for establishing a metatheory for its most
effective use. For this chapter to be complete, it must contain material
that permits one to begin or continue research, whether directed to theory,
to implementation, or to application. Therefore, we focus in Section 6
on challenge problems for testing, comparing, and evaluating programs,
approaches, and ideas. ~Some of the included problems remain open at
the time of this writing, but we conjecture that these are amenable to
attack with an existing automated reasoning program. Since a frequent
request concerns research topics—suitable for a doctoral dissertation, for
example—we present, in Section 7, basic research problems and discuss the
current state of automated reasoning.

To further encourage and support research, we include in Section 8
information on appropriate books, on obtaining an automated reasoning
program, and on obtaining access to a database of problems of various
types. One can now easily obtain by anonymous FTP a portable program
[McCune, 1990] that can assist in systematically seeking shorter proofs,
identifying dependent axioms, formulating conjectures, checking proofs,
finding new axiom systems, and (the familiar) proving theorems.

