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A MATHEMATICS TEXTBOOK
UNDER THE EDITORSHIP OF

Carl B. Allendoerfer




Preface

This book began as a set of notes for a post-calculus course
taken by prospective mathematics majors at the University of
Michigan. The main objective of this course, and hence that of
the book, is to provide the student with a feel for the way in
which contemporary mathematicians design and build the
machinery they use.

This approach dictates the initial subject matter of the book,
set theory.

Every student of mathematics soon becomes aware of the fact
that any mathematical concept can be stated ultimately in terms
of sets, set operations, functions, and relations. Thus a knowl-
edge of set theory is essential for the mathematician. Besides
this, elementary set theory as presented here is simple enough,
yet abstract enough, to provide the beginner with an abundance
of problems on which to cut his teeth.

The more complicated set theoretic notions we have explored
are used in that part of the book devoted to intermediate analy-
sis. This portion includes a discussion of what the real number
is, the elementary topology of the real line, and two chapters
devoted to infinite series.

The reader who works through the text will have seen the
development of mathematical notions from the extremely simple
through the rather difficult.

We have adopted and stressed the viewpoint that rigor is
essential in mathematics at each step in the development of an v
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idea. That is, the idea must be rigorously defined and its conse-
quences verified in every detail. On the other hand, once this
point has been driven home, we expect the reader to supply
many of the details himself. The majority of the exercises are
designed to give the reader practice in supplying proofs and
many of them fill gaps in the text.

Although the construction of the real numbers and verification
of their properties are relegated to the appendixes, the reader is
expected to use his intuitive knowledge of the real numbers
throughout the text as a source of examples.

We have assumed, in several places, a knowledge of differen-
tial calculus—particularly in the chapters on infinite series. In
addition to this there are several places in the text where the
principle of induction is used. Finally, some exercises involving
the concept of finiteness precede the definition of this term;
these may be omitted without impairing the flow of the text.

We are indebted to several of our colleagues who read and
commented on various portions of the manuscript and to many
of the students who were subjected to preliminary versions of
this book and who pointed out errors and omissions.

We acknowledge with thanks the aid we have received from
the Department of Mathematics of the University of Michigan
and, most especially, from the secretarial staff who typed much
of the manuscript.

Finally, special thaaks are due our wives for their encourage-
ment during the writing and rewriting of this book.

M. S. R.
E. S. T.
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CHAPTER 0

Some Remarks
About Logic



1. INTRODUCTION

This chapter is a brief, and by no means thorough, introduc-
tion to some of the rules by which the deductive process in
mathematics is carried out. Almost everyone is aware of these
rules, perhaps implicitly, but experience indicates that they may
be forgotten or not believed just when needed most.

It is hoped that the remarks which follow will serve as a set
of guidelines, not obstacles. The reader may have an easier
time with this chapter if he realizes that it has little or no mathe-
matical content of the type he recognizes. Rather it is meta-
mathematical. We are merely going to make some remarks and
observations about mathematics and, more specifically, about
what a mathematical assertion is and what constitutes a proof.
We also introduce some commonly used terminology and
notation, much of which may already be part of the student’s
vocabulary.

2. ASSERTIONS

Here are three mathematical statements which we number for
future reference.

2.1. If x and y are positive real numbers, then xy is positive.
2.2. If fis a differentiable function, then f'is continuous.
2.3. If f'is a continuous function, then fis differentiable.

Each of these statements has essentially the same form. We
have one or more objects, denoted by letters (variables), under
consideration and two statements about these objects, the
hypothesis and the conclusion. Each statement is of the form
“If (hypothesis), then (conclusion).” In statement 2.1, for
example, the objects are two numbers, denoted by x and y. The
hypothesis is that both numbers are positive and the conclusion
is that their product is positive.

Each statement is an assertion to the effect that a certain
hypothesis implies a certain conclusion in the sense that if any
object (or set of objects) satisfies the condition stated as the
hypothesis, then that object (or set of objects) also satisfies the

2 condition stated as the conclusion. In this sense each of the
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““if, then” statements can be rewritten in the form * (hypothesis)
implies (conclusion).” We call such statements assertions or
implications.

A mathematical theory consists in large part of a body of
valid assertions which are derived, via standard rules of logic,
from basic definitions and axioms. Assertions which are con-
sidered especially important and/or ““pretty” are given special
titles, for example, theorem, corollary, proposition. Obviously,
it is important to know what it means for an assertion to be valid
(true) or invalid (false). We now discuss these concepts and
touch on the related idea of a proof.

3. VALIDITY AND SOME REMARKS ON PROOFS

Let H and C be statements concerning one or more objects.
We shall say that the assertion ““ H implies C” is valid or true
provided that if an object or set of objects satisfies H, it also
satisfies C; otherwise, we say the assertion is invalid or false.

Let us consider assertions 2.2 and 2.3 in light of the above
definition. As everyone knows, assertion 2.2 is valid; your
favorite calculus book contains a proof of it. It follows that since
the function f(x)=sin x is differentiable, it is continuous.
Similarly, f(x) = e* is differentiable, hence continuous. Indeed,
once we know that 2.2 is valid, we can keep getting specific
examples of continuous functions as long as our stock of
differentiable ones holds out. One common mistake people
make is to assume that the reverse of this process is true, that is,
that an implication is valid if it is valid in a number of specific
cases. The problem, of course, is that some cases not tested may
show the assertion to be false. In connection with assertion 2.2,
we also observe that the implication says nothing about the
continuity of a function which is not differentiable; there are
nondifferentiable functions which are continuous and ones
which are not continuous.

Turning now to assertion 2.3, let us note that the functions
f(x) =sin x and f(x) = e” satisfy both the hypothesis and the
conclusion. By looking at these two functions, one might jump
to the conclusion that assertion 2.3 is valid. However, it is not
valid, because the absolute value function f(x)=|x| is con-
tinuous, but, at the origin, it fails to be differentiable. 3
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With these illustrations in mind, we list some observations
about validity and proofs of assertions.

3.1. To prove that *“ H implies C” is valid it does not suffice
to exhibit examples of objects satisfying H which also
satisfy C.

3.2. To prove that “ H implies C” is invalid, it suffices to
exhibit an object which satisfies H but not C. This
process is called finding a counterexample; thus
f(x) =|x] is a counterexample to assertion 2.3.

3.3a. If “ H implies C” is valid and an object does not satisfy
C, then neither does it satisfy H.

3.3b. Equally important, fo show that “H implies C” is
valid, it suffices to show that if any object does not
satisfy C, then neither does it satisfy H.

Statement 3.3a is just a matter of juggling words in the defini-
tion of validity. Statement 3.3b can be illustrated by the follow-
ing example. Suppose we wanted to prove assertion 2.2, “If fisa
differentiable function, then f is continuous.” We could go
about this directly by showing that the condition for continuity
(the 6-¢ condition) follows from the condition for differentiability
(the difference quotient condition). This would be what is
usually called a direct proof.

There is another way to prove this assertion: We could show
that if a function is not continuous, then it is not differentiable.
Conceivably this would be done by writing down in terms of
&’s and ¢’s what it means for f not to be continuous and, using
this, to show that some difference quotient does not behave as it
must in order for f to be differentiable. Proofs employing this
tactic are often called indirect proofs and are quite common
(although in the example chosen it so happens that a direct proof
is neater).

There is a further refinement of the indirect proof, called
proof by contradiction. The idea is this: To prove that “H
implies C” we assume that there is an object which satisfies H
but not C and, by some sort of argument, arrive at a conclusion
which contradicts a known fact. The usual proof of the state-

ment “If x = /2, then x is irrational,” is an example of such a
4 proof. One assumes that \/2 is rational (that is, \/i =m/n,
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where m and n are integers) and, by some tricky manipulations,
shows that this contradicts some known algebraic facts.

In the above we have shown one way of not proving an asser-
tion, given descriptions of the main varieties of proofs and
discussed the idea of a counter example. We have not touched
on the really crucial questions of what a proof is and how a
person thinks one up. It requires a highly formalized language to
give an accurate definition of the word ““proof.” We probably
all agree that, intuitively, a proof of the validity of the implica-
tion *“ H implies C” is a logical chain of reasoning which starts
with the statement that some object satisfies H and, using facts
already proved or axioms, ends with the statement that the
object also satisfies C. Strictly speaking, this is pretty much
mumbo jumbo, since we do not know what a ““logical chain of
reasoning” is. Happily, it turns out that we can get by without a
formal definition, because people involved in mathematics over
a period of time tend to get by some sort of osmosis a feeling for
what constitutes a mathematical proof.

Probably one learns to recognize whether an assertion has
been proved or not by attempting to construct his own proofs
and by criticizing those of others. This brings us to the second
question. Proofs are concocted of a combination of experience,
intuition, insight, ingenuity, and, sometimes, good luck. This
book is designed to help the reader acquire some measure of the
first three of these commodities ; the last two are in great demand
and each person must supply his own.

We close this section with a warning. It is easy to write down
assertions which are meaningless, in the sense that the hypothesis
or the conclusion contains variables which are not well-enough
modified. The following example illustrates this: “If x is a real
number, then x 4y =10.”

The objects under consideration appear to be real numbers,
but there is a variable, y, in the conclusion which is not quantified
(modified) in the hypothesis. We have no way of proving or dis-
proving this assertion without additional information about y.

For example, if we add to the hypothesis the requirement that
y =5weget: “If xisareal numberand y = 5, then x +y=10."
This is false, since x =2 is a counterexample. But if we add the
requirement that y denotes the quantity 10 —x, we get a valid
assertion: “If x is a real number and y = 10 — x, then x +y=
10.” 5
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The reader should assiduously avoid meaningless statements
of the sort just described, although ““dangling variables” may
become harder to detect, as the level of abstraction increases.

4. NOTATION AND TERMINOLOGY

Instead of writing “If H, then C” or “ H implies C,” we
frequently use the symbolism “H = C.” Thus assertion 2.1
becomes: “ x and y are positive real numbers =xy is positive.”

Consider now two statements, which we shall denote P and Q
instead of H and C. The converse of the implication “P = Q" is
the implication “Q = P”; thus the converse is obtained by
reversing the roles of hypothesis and conclusion. Note that
assertion 2.2 is the converse of assertion 2.3 and, of course, vice
versa.

Obviously an assertion may be valid and its converse invalid.
If, however, it happens that both “P =Q” and “Q =P are
valid, we say that P and Q are equivalent and write “P < Q.”
This last symbolism is frequently read *“ Pif and only if Q”’; here
the “only if” corresponds to the arrow = and the “if” to the
arrow <=,

For example, everyone knows that if x is a positive real
number, then so is x/10 and, conversely, if x/10 is a positive real
number, so is x. Thus we have ““ x is a positive real number if and
only if x/10 is a positive real number.”

Besides ferming the converse, we can alter the assertion
“P = Q in other ways. One such way is to form the assertion
“not Q =not P, where “not P and “not Q” are the nega-
tions, or denials, of the statements P and Q. The statement *“ not
Q =not P is called the contrapositive of “P = Q.” The con-
trapositive of assertion 2.2 is the assertion *If a function fis not
continuous, then it is not differentiable.”

The point we want to make is that a given assertion and its
contrapositive are equivalent in the sense that they are either both
valid or both invalid. In particular, to prove “P = Q" it suffices
to prove “not Q =not P.” This is precisely the content of
observation 3.3b and our remarks about indirect proofs in
Section 3.

We close this chapter by establishing the following convention.

6 From now on when we mean to say that the implication “P = Q0



