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FOI’C\VOI'C[

Modes come and go in Mathematics as in other fields of human
endeavor. New modes first have a hard time breaking through
until they are greeted with acclaim, copied and multiplied by the
debutants, and then become oldfashioned and are disdained by the
still younger set. In the meantime the old modes show great re-
luctance to disappearing, there are always some faithful souls who
prefer the Paris mode of the twenties to, say the Princeton mode of
the fifties. It is never safe to say that a particular field in Mathe-
matics is dead or has outlived its usefulness. I have heard many
pronouncements to that effect, often made with malice toward
some; they have usually been belied by later events. A mathe-
matician can and does choose the mathematics he prefers to do, not
so the theoretical physicist who often cannot tell what type of
mathematics his problem will lead to. We have seen over and over
again during the last fifty years how one obsolescent mathematical
theory after another had to be dug out of oblivion to meet the
varying needs of physics. And there have always been young
mathematicians willing to aid in the process who found rich reward
in so doing.

The theory of orthogonal expansions had its origin in the debate
concerning the vibrating string which animated the mathematical
world two hundred years ago. The theory has had a place in the
sun ever since, though naturally it meant different things to dif-
ferent times. How much it meant to the mathematicians of the
cighteenth and nineteenth centuries can be read off from the
monumental, 1800-page report on oscillating functions published
by H. Burkhardt in 1908 covering the period 1727-1890. This was
before the days of Fejér, Hardy, Hilbert, Lebesgue, Plancherel,
F. and M. Riesz, Weyl, and Wiener, to mention only a few of the
men whose work completely transformed the theory during the first
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vi FOREWORD

third of this century. The new quantum mechanics found a rich
storehouse to draw from; we mathematicians have been amply
paid for the borrowings.

What is nowadays called the classical theory of orthogonal series
is ably presented in G. Sansone’s treatise which here appears in
careful English translation. Since the term ““classical” is often used
in a derogatory sense by our vigorous youngsters—if lucky, their
work will also become ““classical’—I hasten to add that the term
is here used as praise. The treatise contains what the student needs
to know concerning the field, set in proper perspective, rigorously
presented with due attention to detail and appropriate technique
but nevertheless easy to read. It contains a wealth of information,
factual and bibliographical, of use to the working analyst. If the
reader should find the book short on maximal ideals, group
characters, and other adjuncts of “modern” Fourier analysis, let
that be a challenge to him to write a book in which these concepts
are placed in the foreground. Such books are also needed.

American mathematics is deeply indebted to Professor Diamond
for making this valuable text available to our students. Personally
I am glad that my praise of the original had such beneficial effects.
I can only hope that the translation will enjoy the same popularity
in this country as the original has had and has in Italy.

EiNAR HILLE



Preface

G. Vitali’s monograph Moderna 1 eoria delle Teoria delle Funziont
di Variabili Reale finds here its natural sequel. The work should
prove especially valuable to the applied mathematician who very
often does not have access to the original papers. Its purpose is
therefore to present general results and convenient criteria con-
cerning Fourier series, Legendre series, Laguerre and Hermite
polynomials.

Care has been taken to keep the necessary connections between
this work and Vitali’s monograph and it is hoped that the reader
will be inspired to look further into a number of interesting ques-
tions concerning which only the essential points have been covered
here.

The first chapter “Expansion in Series of Orthogonal Functions
and Preliminary Notions on Hilbert Space” based on G. Vitali’s
Geometria nello Spazio Hilbertiano, contains the most pertinent
results on expansion in series of orthogonal functions and includes
some theorems on functions summable L” and on convergence in
the mean of order p.

The second chapter, “Expansion in Fourier Series” includes a
treatment of the Gibbs phenomenon and a detailed discussion of
the classical problem of Fourier on the distribution of heat in a
plane. Also the validity of the theorems of Fejér and Lebesgue for
(C, k) summability of Fourier series is extended to values of £ > 0.

In the third chapter, “Expansion in Series of Legendre Poly-
nomials,” the representation of Legendre polynomials by the
classical formulas of Mehler is established; the elegant expansion
in series of Stieltjes-Neumann of (1—=)® is given prominence; and
Bruns’ inequalities for the zeros of P, (z) are established by the -
method of Szegd. In view of the great importance in applied
mathematics of the expansion of functions in series of spherical
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viii PREFACE

harmonics in two variables, this chapter has been further amplified
by a brief study of the spherical harmonics of Laplace and theorems
on (C, k) and Poisson summability of such series.

Chapter four contains sufficient material to provide an introduc-
tion to the theory of representation of functions by series of La-
guerre and Hermite polynomials. The reader who wishes to acquire
a more complete knowledge of the theory is referred to G. Szegd’s
recent treatise Orthogonal Polynomials [107a] and the extensive
bibliography of J. H. Shohat, E. Hille, and J. L. Walsh in their
Bibliography on Orthogonal Polynomials [100b].

Formulas for the asymptotic approximation of Hermite poly-
nomials are obtained by the method of Liouville-Stekloff and are
used to obtain bounds on the orthogonal functions for complex
arguments. The sixth article give a more precise form of Uspensky’s
formulas for the asymptotic approximation of the Laguerre
polynomials.

GIOVANNI SANSONE



Translator's Note

In 1952 the third edition of Giovanni Sansone’s treatise on
Series Expansions of Orthdgonal Functions appeared as Part II of
Moderna Teovia delle Funzioni di Variable Reale in the series of
Monografie di Matematica Applicata published by the Consiglio
Nazionale delle Ricerche. Part I of this treatise was written by
G. Vitali.

The enthusiastic reviews by Einar Hille of Sansone’s work and
the fact that much of the material, especially the chapters on series
expansions in terms of Legendre polynomials and Laguerre and
Hermite polynomials, was not readily available in English, sug-
gested the desirability of translating the book.

The present volume comprises the first four chapters of Sansone’s
Series Expansions of Orthogonal Functions. The remaining two
chapters, “Approximation and Interpolation” and “The Stieltjes
Integral,” which have no essential connection with the first four
chapters, were omitted. Chapter IT has been extended to include a
section written by Sansone on the Fourier transform.

For the most part the translation is literal. The only essential
departure from this procedure is in Chapter I, Sec. 5, “Convergence
in the Mean,” where the brief translator’s note on the concept of
internal convergence (convergenza completa in media) was added
to the text.

In view of the numerous references in the Italian text to theo-
rems in Part I of Moderna teoria delle funzioni di variable reale, it
was decided to add an appendix listing those definitions and theo-
rems from Part I to which references are made in the translation.

I am especially grateful to Professor Sansone for his encourage-
ment and assistance in correcting the manuscript and selecting the
material for the appendix. I also wish to acknowledge the contri-
bution of the administration of Stevens Institute of Technology
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X TRANSLATOR’'S NOTE

in making available the time and secretarial assistance necessary to
carry out the translation; the personal assistance of Frank Babina,
one of my students at Stevens; the patient efforts of the secretary,
Katherine Melis; and, finally, the encouragement and cooperation
of Interscience Publishers, without which the present volume would
not be possible.

AiNsLey H. Diamonp
November, 1958.
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CHAPTER I

Expansion in Series of Orthogonal Functions

and Preliminary Notions of Hilbert Space

I. Square Integrable Functions

1. DerFinrtioN 1. A function will be said to have a property
almost everywhere in a set g if it has that property for all points
of g except for a set of measure zero. In future the abbreviation
“a.e.” will denote “almost everywhere.”

DeFiniTION 2. If g is a measurable set of points of a straight
line, /(¢) is a tunction defined a.e. in g and f2(¢) is integrable, then
f(t) is called square integrable in g.

Tueorem 1. If f, and /, are two functions measurable and
square integrable in a set g, then the product £, f,is also integrable
in g.

Proof. It is sufficient to show that |f,/,| is integrable in g.
Clearly, |f,fs] = 3/5+ 1f; a.e. in g and therefore |f,f,) admits
-a majorant which is integrable.

Henceforth, we shall tacitly assume that the functions under
consideration are measurable.

CororrARY. If fis a function square integrable in a set g of
finite measure, then f is integrable in g.

Proof. In fact the constant 1 is square integrable in g, precisely
because g has finite measure, and therefore the product 1-f is
integrable in g.

Tueorem 2. If £, /,, ..., f, are square integrable functions
in g, and ¢, ¢y, ..., ¢, are constants, then ¢, f, + ¢of, + ** - +¢,f,
Is a square integrable function in g.

1



2 EXPANSION IN SERIES OF ORTHOGONAL FUNCTIONS CHAP. I

Proof. fi, f5, ..., [, are finite a.e. in g, and since

(crfy + ot + ... + Enfn)® :2": ¢iCrlily

i,k=1
and the second member is integrable, it follows that the first
member is integrable.

2. Linearly Independent Functions

1. DEFINITION 8. # functions /,, f,, . .., f, are called linearly
dependent in g if there exist # constants €1, Co ..., C,, Not all
zero, for which the function ¢; f; + cof, + ...+ C,f. 1S zero a.e.
If such constants do not exist, the # functions are called linearly
ndependent.

In a set g of measure zero, # functions are always linearly
dependent. Accordingly, the discussion which follows is limited
to sets of non-zero measure.

2. THEOREM 3. A necessary and sufficient condition for %
functions

(1) fo fo oo fa

square integrable in g, to be linearly dependent in g 1s the vanishing
of Gram’s determinant

| Aa, [ oo, fgflfndt
Gt tar oo fo) = szfldt: fgf%dt, C fgfzfndt

[, thdt, [ fuhat, ..., [ ras

(Gram [42]; Kowaleski [59]).
Proof. The condition is sufficient. In fact, if G(fy, fo o« o [2)=0
it is possible to find # constants 4, 4,, . . ., 4, not all zero for which

> Ao, o= 1, (r=1,2,...,n)

s=1



SEC. 2 LINEARLY INDEPENDENT FUNCTIONS 3

where

&e = [ otsdt.

If Fisdefined by F = > | 4/,, then [, Ff.dt = 37, ¢, =0,
whence

0= ézr f Ff,dt:fgi_l,f,(glsfs)dtz f F2dt.

Now, since u(g) 7 0 (where pu(g) denotes the measure of g), then
F2 and therefore F, is zero a.e. in g.
Conversely, if the functions (1) are linearly dependent in g,

there will exist a system of constants 4, 4, ..., 4, not all zero
such that

n

2 A fs =0

s=1

a.e. in g. From this follows

O:f fr(zlsfs)dt: zlsJ\ frfsdt: zlscr,s (7’: 1,2,... n)
7 =1 s=1 v s=1
and therefore G(fy, fo, . . ., [,) = 0.

THEOREM 4. The rank of the matrix corresponding to the
determinant G(f;, fa ... f,) gives the maximum number of
linearly independent functions fy, fs, ..., f,. If the rank is 7,
then 7 of the functions are linearly independent, and the other
n — 7 functions are linearly dependent on these.

Proof. Let r be the rank of the matrix correponding to the
determinant G. Since G is symmetric it contains a non-vanishing
principal minor of order ». Without loss of generality, we may
suppose that this minor is formed from the first » rows and the
first » columns of G. It follows that G(fy, /s, - - -, f,) 7 0. There-
fore the functions f, fs, ..., f, are linearly independent.

From the fact that G(fy, for - - o [ frrs) = 0,7 =L, 2, .. ., n—7,
it follows from theorem 3 that every function f,,; is linearly
dependent on fy, f,, - . ., f,- In particular, we have



4 EXPANSION IN SERIES OF ORTHOGONAL FUNCTIONS Cuar. I

M+ Aofp 4+ + Aty ’2‘7+2‘/Ir+7' =0

where 4,,; 5 0, and therefore f,,; is a linear, homogenous com-
bination of £, f,, .. ., f,.

THEOREM 5. It the functions f,, f2 -« [, square integrable
In g, are linearly independent, then G (fir for oo 1) > 0.

Proof. TFor n constants €1, €3 . . ., C,, NOt all zero
(€1 +eofs+ -+ ¢, f,)2 >0, ae. in g. Therefore

f (cth +efs+ - +c,fn)2dt > 0, and finally the quadratic
g

form in the ¢, ¢,, ..., ¢,

2 cien [, fubudt
Is positive definite, and its discriminant Gty for - -y 1) > 0.
COROLLARY 1. If fy, f,, ..., f, are square integrable in g, then

Gy for- - 1) 20

and the equality sign holds only in case the given functions are
linearly dependent in g.

CoRroLLARY 2. If f, and f,are two squareintegrable functions then
[,hat, [ hpwae

ol 1= [ hhat, | fa

= [, at [ par— ([ hjad) 2 0

and therefore
([, itedt)* < [ prae | fias

The equality sign holds only in case £, and /2 are linearly dependent
in g. This inequality, usually referred to as the Schwarz in-
equality, was discovered independently by Bunikowsky in 1861
and Schwarz in 1885, The Schwarz inequality will arise as a
particular case of the inequality which we shall establish in Sec. 9
of this chapter.

CoroLLARY 3. If a function / defined in a set g of finite.



Sec. 3 ELEMENTARY NOTIONS OF HILBERT SPACE o

measure is square integrable, then

2 _ "
([, 14 < [, P
Proof. Put f; =/f, f, =1 in the Schwarz inequality.

3. Elementary Notions of Hilbert Space

1. DerFINITION 4. We shall call a 7eal Hilbert Space, or simply
a Hilbert Space, or Space H, the set of all the functions which are
square integrable in g. Two functions will be considered as the
same element of H if they are equal almost everywhere in g.
Any function whatever of the given set will be called a point
of H; the function which vanishes almost everywhere will be called
the origin of H.

Two points f; and f, are two distinct points of H if f; and f,
are not equal almost everywhere.

2. DermNiTION 5. If f; and f, are two points of H, we shall
call the distance between these two points the positive square
root of [, (f, — f,)%dt; consequently if d is the distance between
two points f; and f,, then 4 = 0 and

@ = [ (j,—f)%ds.

The distance from a point / to the origin of H is given by V' [, f2dt.

3. DermviTION 6. If f and ¢ are two distinct points of H
and ¢ is distinct from the origin, we shall call the straight line
passing through the points f and ¢ the totality of the points
f -+ Ap where A varies from —oo to oo.

There is clearly a one-to-one correspondence between the points
of the line and the values of A.

Consider a line Ap passing through the origin; the points of
this line which are a unit distance from the origin correspond to
the values of A for which 42, ¢?dt = 1; consequently, there exist
on the line Ap two and only two points ¢/V/ [, @*dt, and —g/ v [, 92dt
which are a unit distance from the origin. These two points will
ormal parameters of the line Ag.




6 EXPANSION IN SERIES OF ORTHOGONAL FUNCTIONS CHAP. I

DeriniTION 7. A function ¢ square integrable in g will be
called normal in g if

Ltpzdtz 1.

The normal functions in g consist of all the points, and only
those points, of H which are a unit distance from the origin.

To normalize a function ¢ square integrable and not vanishing
a.e. in g, means to determine a factor ¢ for which ce is normal
-in g, or, in other words, to find on the line Ap the points which
are a unit distance from the origin. The required values of ¢
are given by

c= 1/]/ fg(p%ﬁ, c=— 1/]/ Lqﬂdt.

4. Let Af, up be two lines through the origin; from the Schwarz
inequality

(v =, pat J

follows the existence of a number w between 0 and = such that

(1) cos w = (L]‘(pdl)/]/ [ pat| gt

DEerFiniTION 8. The number w between 0 and z which satisfies
(1) will be called the angle between the two lines Af, up in H.

In particular [,fpdt = 0 is a necessary and sufficient condition
for w = =/2.

We shall say in this case that the two lines 4f, up (or the two
functions f and ¢) are orthogonal in H (in g).

A necessary and sufficient condition for w = 0, = is

(v = [ ] e

which implies that the functions / and ¢ are linearly dependent
(cf. Sec. 2) and the two lines f, up coincide.

It is easy to show that the functional metric defined in
Sec. 3.2 has the properties of distance in ordinary space. For
example, if d, and d, are the distances from the two points f,



