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Preface

Optimal control of cooperative systems continues to be at the forefront of re-
search initiatives in the military sciences. Recently, cooperative system research
has expanded from the military domain to other engineering disciplines, includ-
ing drug design and disaster recovery. While there exist many powerful tech-
niques for optimal cooperative control problems, this area is still considered one
of the most difficult in the applied sciences. Thus, there must be continual im-
provements and new insight directed to the modeling and analysis of optimal
cooperative control problems. This present volume, as well as volumes from pre-
vious years, clearly illustrate novel solutions from some of the best and brightest
optimal cooperative control researchers.

This volume represents the most recent in a series of publications discussing
recent research and challenges in the field of optimal cooperative control. Most
of the chapters in this book were presented at the Seventh International Confer-
ence on Cooperative Control and Optimization, which took place in Gainesville,
Florida, January 31 — February 2, 2007. It is our belief that this book will be
an invaluable resource to faculty, researchers, and students in the fields of opti-
mization, control theory, computer science, and applied mathematics.

We gratefully acknowledge the financial support of the Air Force Research
Laboratory, The Center for Applied Optimization at The University of Florida,
and Raytheon, Inc. We thank the contributing authors, the anonymous refer-
ees, and Springer Publishing for making the conference so successful and the
publication of this book possible.

Michael J. Hirsch
Panos M. Pardalos
Robert Murphey
Don Grundel
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Locating RF Emitters with Large UAV Teams

Paul Scerri, Robin Glinton, Sean Owens, and Katia Sycara

School of Computer Science
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{pscerri, rglinton, owens, katia}@cs.cmu.edu
Gerald Fudge and Joshua Anderson
L-3 Communications Integrated Systems
Greenville, TX 75402, USA
{Gerald.L.Fudge, Joshua.D.Anderson}@L-3com.com

Abstract. This chapter describes a principled, yet computationally ef-
ficient way for a team of UAVs with Received Signal Strength Indica-
tor (RSSI) sensors to locate radio frequency emitting ground vehicles
in a large environment. Such a capability has a range of both civilian
and military applications. RSSI sensor readings are noisy and multiple
emitters will cause ambiguous, overlapping signals to be received by the
sensor. Generating a probability distribution over emitter locations re-
quires integrating multiple signals from different UAVs into a Bayesian
filter, hence requiring cooperation between the UAVs. To build a co-
herent distributed picture given communication limitations, the UAVs
share only those sensor readings that induce the largest changes in their
local filter. Each UAV translates its probability distribution into a map
of information entropy and then plans a path that will maximize the re-
duction in entropy (or conversely provides the highest information gain.)
Planned paths are shared with a subset of other UAVs to minimize over-
lapping search. Experiments in a medium fidelity simulation environment
show the approach to be lightweight and effective. Live flight results with
lightweight Class I UAVs validate our approach.

1 Introduction

The rapidly improving availability of small, unmanned aerial vehicles (UAVs)
and their ever decreasing cost is leading to considerable interest in multi-UAV
applications. However, while UAVs have become smaller and cheaper, there is a
lack of sensors that are light, small and power efficient enough to be used on a
small UAV yet are capable of taking useful measurements of objects often several
hundred meters below them. Static or video cameras are one option, however
iimage processing normally requires human input or at least computationally
intensive offboard processing, restricting their applicability to very small UAV
teams. In this chapter, we look at how teams of UAVs can use very small Re-
ceived Signal Strength Indicator (RSSI) sensors whose only capability is to detect
the approximate strength of a Radio Frequency (RF) signal, to search for and

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 1-20, 2007.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2007



2 P. Scerri et al.

accurately locate such sources. RSSI sensors give at most an approximate range
to an RF emitter and will be misleading when signals overlap. Applications of
such UAV teams range from finding lost hikers or skiers carrying small RF bea-
cons to military reconnaissance operations. Moreover, the core techniques have
a wider applicability to a range of robotic teams that rely on highly uncertain
sensors, e.g., search and rescue in disaster environments.

Many of the key technologies required to build a UAV team for multi-UAV
applications have been developed and are reasonably mature and effective [1,2].
However, for large UAV teams with very noisy sensors, key problems remain,
specifically, much previous work is formally grounded but impractical [3]. Often
the coordination and planning algorithms and the representations of the envi-
ronment are not appropriate for more than two or three UAVs and targets. For
example, some solutions require a UAV to know the planned paths of all other
UAVs in order to plan its own path [8], but this is infeasible (both in terms
of communication and computation) when the number of UAVs is large. Other
approaches only solve part of the problem, e.g., estimating locations from sensor
readings [12] or planning cooperative paths [11], but do not combine these ele-
ments in an integrated solution, although there are some exceptions [4]. Signal
processing techniques for creating probability distributions from noisy signals
have been extensively studied, but rarely have distributed filters versions been
created and those that have been do not scale to larger teams [9)].

Our approach to this problem has three key elements that enable locating
RF emitters with large teams of lightweight UAVs. The first key element is a
distributed filter to localize RF emitters in the environment. Each UAV has a
Binary Bayesian Grid Filter [7] where a value of a cell in the grid represents the
probability that there is an emitter in the corresponding location on the ground.
Due to limitations on available communication bandwidth, it is infeasible for
UAVs to share their entire distribution, instead they share a small subset of
their sensor readings with others in the team. Hence, departing from previous
approaches that elicited a model of what teammates know in order to choose
what to send [9], we started from the assumption that if some information leads
to large local information gain, it will probably do so for much of the team. We
investigated two information gain based heuristics for choosing which readings
to share with teammates. The first heuristic is to send sensor readings that have
the greatest impact on the UAV’s local probability distribution. The second
heuristic is to create a parallel probability distribution based purely on readings
received from teammates and send sensor readings that have the biggest impact
on that distribution. Intuitively, the first heuristic sends readings that were most
important for the local UAV, while the second sends sensor readings that are
most important to the team, given a local model of what the team knows. Exper-
iments show that the first heuristic results in better team behavior than sending
random messages, but the second heuristic performs worse than random.

The second element of the approach is to tightly couple estimates of the cur-
rent locations of the emitters to the UAV path planning process. Specifically,
a probability distribution over emitter locations is translated into a map of the
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information entropy in the environment. UAVs plan paths through areas of maxi-
mum entropy, hence maximizing expected information gain. The UAVs plan only
a relatively short distance ahead in each planning cycle. This approach allows
the UAVs to be reactive to new information, which is critical when sensors are
highly uncertain and the domain is dynamic. For example, if a UAV traverses
an area, but the sensor readings do not provide an accurate picture of that area,
the entropy will remain high and the UAV will consider re-traversing the area.
Notice that the entropy map coupled with the path planner looking to maximize
information gain provides an integrated way for trading off between going to the
locations where there will be most information gain and locations that can be
quickly reached.

The third key element of the approach is a very lightweight, computationally
inexpensive method for cooperative path planning. The important application
feature underlying the approach is that due to the high uncertainty and dynami-
cism in the environment, some overlap of paths is acceptable (or even desirable),
provided that the UAVs mainly spread out and search areas of maximum en-
tropy. Our approach is for each UAV to share its planned path with some other
members of the team. When planning, each UAV estimates the change in en-
tropy that would be induced by those paths being flown by others and plans
on the resulting entropy map. If the most current path of a particular UAV is
not known the most recent location is used to roughly estimate where that UAV
might be searching.

2 Problem

This chapter presents a method for localizing an unknown number of RF emitters
using a team of UAVs. UAVs are outfitted wth RSSI sensors which detect the
power of an RF signal at a position in space. The UAVs must maintain a belief
over the state of all emitters in the environment in a decentralized manner.
The emitters are represented by the set: £ = {e;...e,} where n is not
known to the team of UAVs. Emitters are all assumed to be emitting at a single
known frequency.! Emitters are mobile and emit intermittently. The homoge-
neous UAVs are represented by the set: U = {uj ... un}. Each u; flies a path
given by w'(t). During flight a UAV takes sensor readings, z¢(loc) which are
the received signal power at a location loe = {z,y, z} where {z,y, 2} gives the
Euclidean coordinates of a point in space relative to a fixed origin. The power
of the signal received is a result of three components. The first component,
I'(loc,e;) = dzT‘(fo"ciTl)—z, where dist(loc, e;) is the Euclidean distance between
loc and e; and eqonst 1S a constant that gives the power at dist(loce,,e;) = 0,
is due to the sources themselves. The second component, EN (loc, E), is due to
multi-path and attenuation of the signal due to environmental factors. Multi-
path occurs when a reflected component of the signal arrives at a receiver and
in combination with an attenuated direct signal results in a perturbed source

! This will be relaxed in future work.
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location estimate. Finally € gives typical zero-mean normally distributed sensor
noise. The total power received at a location (loc) in space is then given by:

zi(loc) = Z I'(loc,e;) + EN(loc,E) + € ~ N(0,0)
e, €F

Figure 1 shows some signals that will be received at different distances from
a single emitter (i.e., no overlap). This is the basic signal model used in the
simulation results below and closely represents real data collected from RSSI
sensors on a physical UAV. The x-axis shows the distance and the y-axis shows
the signal strength in dB (which is a log scale.) There are two important things to
notice about this signal. First, it is very noisy, with high variation at all distances
from the emitter, with some background noise high enough to represent being
close to the emitter. Second, it has a very long “tail”, i.e., at a reasonable distance
from the emitter there is still useful information in the signal. Figure 2 shows the
sensor readings when the UAV flies near one emitter and then another. Notice
the overlap in the signals between the emitters, which are about 350m apart.

Received Signal Strength Indicator dB

_ L L L L L L L L
100 200 300 400 500 600 700 800 900 1000
range m

Fig. 1. Sensor readings taken from different distances from an RF emitter

The sensor readings taken by the ith UAV, up until time t are zfo wss By
Each UAV maintains a posterior distribution P over emitter locations given by
Pi(er1...en|z{ ...2}). The UAVs proactively share sensor readings to improve
each other’s posterior distribution. At time ¢ each u; can send some subset of
locally sensed readings: zj C 2} ...z}

The true configuration of the emitters in the environment at time f is repre-
sented as a distribution @ such that

Qt(el Gn) =l

when e ... e, gives the true configuration of the emitters at ¢. The objective
is to minimize the divergence between the team belief and the true state of the
emitters, while minimizing the cost of UAV flight path, and minimizing the total
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L L L . L
350 400 450 500 550 600 650 700
range m from fixed origin

Fig. 2. Sensor readings taken when flying between two emitters, first near one, then
near the other

number of messages shared between UAVs. The following function expresses this
mathematically:

min) " fiCost(u' (1)) + B2 Dxr(P}(|Q) + Bs|zi]
u’L
t wu,eU
where Dgj, denotes the Kullback Leibler divergence and ;. 3 are weights which
control the importance of the individual factors in the optimization process.

3 Algorithm

The most important feature of the overall algorithm is the tight integration of
all the key elements to maximize performance at a reasonable computational
and communication cost. A Binary, Bayesian Grid Filter (BBGF) maintains an
estimate of the current locations of any RF emitters in the environment. This
distribution is translated into a map of the entropy in the environment. The
entropy is captured in a cost map. UAVs plan paths with a modified Rapidly-
expanding Randomized Tree (RRT) planner that maximize the expected change
in entropy that will occur due to flying a particular path. The most important
incoming sensor readings, as computed by the KL information gain they cause,
are forwarded to other members of the team for integration into the BBGFs
of other UAVs. Planned paths are also shared so that other UAVs can take
into account the expected entropy gain of other UAVs when planning their own
paths. The paths of other UAVs are also captured in a cost map. Additional cost
maps, perhaps capturing results of terrain analysis or no-fly zones, can be easily
added to the planner.

3.1 Implementation

The overall, integrated process aims to balance the desire to have a principled,
formally grounded approach, yet be lightweight and robust enough to be prac-
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tical for a team of UAVs. The hardware independent components (planners,
filters, etc.) are isolated from the hardware specific components (sensor drivers,
autopilot) to allow the approach to be quickly integrated with different UAVs
or moved from simulation to physical UAVs. The hardware independent compo-
nents are encapsulated in a prozy which will either be on the physical UAV or
on a UAV ground station, depending on the vehicle. In the experiments below,
the simulations use ezactly the same proxy code as the live flight experiments
with physical UAVs. Figure 3 shows the main components and information flows
from the perspective of one UAV-proxy.

Other Paths

Cost Maps

Fig. 3. Block diagram of architecture

4 Distributed State Estimation

In this section, we describe the filter used to estimate the locations of the emitters
and the decisions individual UAVs make about sending information to one another.

4.1 Binary, Bayesian Grid Filter

The filter uses a grid representation, where each cell in the grid represents the
probability that there is an emitter in the area on the ground corresponding to
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that location.? For a grid cell ¢ the probability that it contains an emitter is
written P(c). The grid as a whole acts as the posterior P/(e1...ep|2}, ... 2]).

To make calculations efficient, we represent probabilities in log odds form,
ie., Iy = logP(i). Updates on grid cells are done in a straightforward Bayesian
mamnner.

P(€i|Zt) P(ez)
1— Pleilz) logl — P(e;)

where P(e;|z¢) is a inversion of the signal model, with the standard deviation
extended for higher powered signals, i.e.,

ly =1li—1 +log

1 71(7,,—1“)2 if > P
————e2 if z; >
Plei]z) = § VD)

—,—_27:(03)6“5(2"”2 otherwise
where o1 > 09 scales the standard deviation on the noise to take into account
structural environmental noise and overlapping signals. Intuitively, overlapping
and other effects might make the signal stronger than expected, but they are
less likely to make the signal weaker than expected. Figure 4 shows a plot of the
(log) probability (y-axis) of a signal of a particular strength (x-axis) when the
emitter is 500 m from the sensor.
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Fig. 4. Mapping between probability and signal strength

Notice that there is no normalization process across the grid because the
number of emitters is not known. If the number of emitters were known, a
normalization process might be able to change the probability of emitters even
in areas where no sensor readings had been taken. Initial values of grid cells are
set to values reflecting any prior knowledge or some small uniform value if no
knowledge is available.

2 A quad-tree or other representation might reduce memory and computational re-
quirements in very large environments, but the algorithmic complexity is not justified
for reasonable sized domains.



