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Preface

The Computational Methods in Systems Biology (CMSB) workshop series was
established in 2003 by Corrado Priami. The purpose of the workshop series is to help
catalyze the convergence between computer scientists interested in language design,
concurrency theory, software engineering or program verification, and physicists,
mathematicians and biologists interested in the systems-level understanding of
cellular processes. Systems biology was perceived as being increasingly in search of
sophisticated modeling frameworks whether for representing and processing system-
level dynamics or for model analysis, comparison and refinement. One has here a
clear-cut case of a must-explore field of application for the formal methods developed
in computer science in the last decade.

This proceedings consists of papers from the CMSB 2003 workshop. A good third
of the 24 papers published here have a distinct formal methods origin; we take this as
a confirmation that a synergy is building that will help solidify CMSB as a forum for
cross-community exchange, thereby opening new theoretical avenues and making the
field less of a potential application and more of a real one. Publication in Springer's
new Lecture Notes in Bioinformatics (LNBI) offers particular visibility and impact,
which we gratefully acknowledge.

Our keynote speakers, Alfonso Valencia and Trey Ideker, gave challenging and
somewhat humbling lectures: they made it clear that strong applications to systems
biology are still some way ahead. We thank them all the more for accepting the
invitation to speak and for the clarity and excitement they brought to the conference.
We also wish to thank René Thomas for his keynote lecture on recent mathematical
advances in the qualitative analysis of genetic regulation networks. As one can tell
from the proceedings, his work has inspired many recent applications of formal
methods to the engineering of biological models.

We are glad to take here the opportunity to express our gratitude to the members
of the program committee and to the referees for their effort in the paper selection
process and for their willingness to participate in the open-minded debate needed
given the interdisciplinary nature of the area of computational systems biology. We
would also like to thank the authors for their interest in the workshop and for their
high-quality submissions and communications.

Finally, we wish to extend our warmest thanks to Monique Meugnier, Catherine
Sarlande and Serge Smidtas for their invaluable help in organizing the workshop, and
to the participating institutions, Genoscope, Genopole, CNRS, University of Paris 7,
and the BioPathways Consortium, which provided financial support.

Conference web-site: http: //www.biopathways.org/CMSB04/

Vincent Danos
Vincent Schachter
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An Explicit Upper Bound for the
Approximation Ratio of the Maximum Gene
Regulatory Network Problem

Sergio Pozzi!, Gianluca Della Vedova?, and Giancarlo Mauri®

1 DISCo, Univ. Milano-Bicocca
2 Dip. Statistica, Univ. Milano-Bicocca
sergio.pozzi@disco.unimib.it
{giancarlo.mauri, gianluca.dellavedova}Qunimib.it

Abstract. One of the combinatorial models for the biological problem of
inferring gene regulation networks is the MAXIMUM GENE REGULATORY
NETWORK PROBLEM, shortly MGRN, proposed in [2]. The problem is
NP-hard [2], consequently the attention has shifted towards approxima-
tion algorithms, leading to a polynomial-time 1/2-approximation algo-
rithm [2], while no upper bound on the possible approximation ratio was
previously known.

In this paper we make a first step towards closing the gap between the
best known and the best possible approximation factors, by showing that
no polynomial-time approximation algorithm can have a factor better
than 1 — % unless RP=NP.

1 Introduction

The completion of the Human Genome project [9, 3] has only given more impor-
tance to the problem of determining the processes regulating the methabolism
of living beings. The knowledge of all genetic sequences of an organism is just
the first necessary step in understanding which of these sequences determine how
those sequences are actually related to the phenotypes, as it is commonly believed
that the dynamics of a living organism is determined throught some complicated
and orchestrated interactions between thousands of genes and their products.

A Gene Network can be thought of as a set of molecular components such as
genes, proteins and other molecules, interacting to collectively carry out some
cellular functions. The advent of DNA microarray technology has led to easily
obtaining huge amount of data regarding various aspects of cellular behavior,
making possible to identify the interactions occuring among the various elements
of a genetic system. Anyway the amount of data does not imply that the overall
quality of data is sufficient to understand the various interaction, in fact these
data are actually insufficient in granularity to uniquely determine the underlying
network of interactions. Building the complex causal gene network of a genetic
system on the basis of these sampled data is then a tipical inference and reverse
engineering task.

V. Danos and V. Schachter (Eds.): CMSB 2004, LNBI 3082, pp. 1-8, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 S. Pozzi, G. Della Vedova, and G. Mauri

A number of different gene network models have been proposed in literature,
each of them resorting to some simplifying assumptions either of biological or
computational nature. In this paper we will study the boolean network models,
where the state of each gene can be only dicotomic, that is active or not active.
This model was already recognized to give a valid description of a genetic system
in [7]. Boolean models are rich enough to represent interesting interactions among
elements and, even if they are sometimes too simplistic [6], they allow to analyze
briefly more complex systems. Actually this fact does not detract to the result
of our paper, as we will show that a certain formulation of the gene network
inference problem cannot be approximated efficiently, and this inapproximability
result is very likely to be extended to more refined models.

In [1] modeling genes as boolean switches has allowed to study the problem
of reverse engineering the gene networks by devising experiments in which, these
switches are strategically manipulated (turned on and off) and then observing
the behavior of the whole system. The main limit of this model is that the
number of experiments that have to be performed in order to reconstruct a gene
network of bounded in-degree D over n genes is 2 (nD ) In an other boolean GN
model [5], the causal relations among network elements is derived on the basis of
the mutual information among them. In our paper we will analyze a particular
boolean model introduced in [2]. As will be explained in Sect. 2, this model is
based on a simple combinatorial description with some biological evidence.

In [2], the problem of determining the causal relations among network ele-
ments has been proved to be NP-hard, consequently there has been much at-
tention to designing approximation algorithms for the problem. The best known
result in such direction is the 1/2-approximation algorithm of [2] (in this paper
the approximation ratio of an algorithm is an upper bound of the ratio between
the value of the approximate solution and the value of an optimal solution).

In this paper a first inapproximability result for the gene network inference
problem based on this model is derived, by showing that it is unlikely that
there exists an efficient approximation algorithm that can guarantee to obtain a
1-— %} ratio.

Our paper is organized as follows: initially we will present formally the
MGRN problem, together with some known approximability results.

Successively we will give a probabilistic reduction from instances of
MAXE3SAT to MGRN ones. This reduction uses a previuolsy known reduc-
tion from instances of MAXE3SAT to instances of MAXE3SAT-B, originally
proposed by Trevisan [8]. Our reduction extends the Trevisan reduction to the
MGRN problem. We will conclude the paper by showing that a consequence
of our reduction is that no polynomial-time approximation algorithm for the

MGRN problem with approximation ratio 1 — 11+/§2 can exist, unless RP=NP.

2 The Maximum Gene Regulatory Problem

A Genetic Network in which an element can only activate or inhibit other ele-
ments, can be viewed as a directed graph in which the nodes represent the genes
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and arcs represent the interactions between genes. Moreover each arc (v,w) is
labeled by A or I, according to the fact the gene represented by v activates or
inhibits the activity of the gene represented by w. Such graphs can be built
using experiments data relative to gene expression dynamics [2]. In order to sug-
gest the causal genetic network on the basis of the edge labeled directed graph,
activating/inhibiting edges representing spurious interactions must be deleted.
The task of deleting spurious interactions has to be done with the following
constraints:

— A gene (a node on the graph) cannot be both of activating and inhibiting
type.

— The number of genes that are controlled (that is vertices that have both
A-labeled and I-labeled incoming arcs) must be maximized.

Both kinds of constraints find their justification in biological evidence and con-
sistency with the parsimonious principle. As a final result of these two guiding as-
sumptions a combinatorial optimization problem on graphs has been defined in 2]

Problem 1. MAXIMUM GENE REGULATION PROBLEM (shortly MGRN). The
instance is a directed graph G = (V, E), where each arc is labeled by either A
or I. The goal is assigning to each vertex a label that is either A or I, so that,
after deleting all arcs (v, w) with label different from that of v, the number of
controlled vertices is maximized.

It is hopeless to devise efficient exact algorithm for the MGRN problem, since
the problem is NP-hard, even for directed acyclic graphs of constant in/out-
degree [2]. For this reason in the last few years the attention has been turned
into finding efficient approximate solutions, showing that the solution having
at least one half of the optimal number of controlled vertices, can be found
in polynomial time [2], but it was not previously known if a polynomial-time
approximation scheme (PTAS) was possible for such problem.

In our paper we will settle the question, by proving that it is not possible
to describe a polynomial-time approximation algorithm with guaranteed ratio
strictly better than 1 — 1—1_1_%, unless RP=NP.

3 A Better Reduction

In [2] it has been proved that MGRN is NP-hard. Here we will show a new
reduction from MAXE3SAT-B to MGRN; our reduction is stronger, since it
allows to prove a better inapproximation results.

The reduction associates to an instance of MAXE3SAT-B an instance of
MGRN as follows: for each clause C; we have a clause gadget consisting of two
vertices Cf, C7 and the A-labeled arc from C} to C2. For each variable z; we
have the variable gadget consisting of two vertices zT, zF and no arc. If the total
number of variables is n, then we have also |n/2 | assignment gadgets, each gadget
is made of 2(B + 1) vertices, half of which are labeled red and half are labeled
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blue. For 1 < i < |n/2] all vertices z%,_,, zL;_,, z1., zF. have an outgoing arc to
each of the vertices of the i-th assignment gadgets. More precisely all red vertices
have A-labeled arcs incoming from z%,_; and z£,_, and I-labeled arcs incoming
from 3721 and z£,, while all blue vertices have I- labeled arcs incoming from zZ,_,
and z&,_, and A-labeled arcs incoming from z2; and z%;. An assignment gadget
and the two corresponding vertex gadgets are represented in Fig. 1.

Fig. 1. Example of vertex and assignment gadget, red vertices are represented by
squares and blue vertices by triangles. A-labeled edges in solid lines, I-labeled edges in
dashed lines

Actually there is a minor problem if the number of variables is odd. In this
case the last assignment gadget is different, as three variables are connected to
it, as shown in Fig. 2.

The reduction can now be completed with the encoding of each clause C; =

Z” \Y aca” Vv 1‘13’3, where each exponent «;; is equal to T or F, according to
the fact that the corresponding variable is or is not negated in the clause. For
each clause C; there are three I-labeled arcs incoming in C? and outgoing from
vertex gadgets associated to the vertices appearing in the clause, more precisely
the arcs are outgoing from the actual vertices encoding the variable and the fact
that the variable is or is not negated in the formula. Formally for each clause
Ci=ux,; o vz, AT ) 13 there are the three arcs (xh” ,C32), (3::;2 ,C2), (1:?3’3,02)
In Fig. 3 is represented an example of encoding.

In the following of the paper we will denote with F’ an instance of MAXE3SAT-
B and with G the instance of MGRN that is associated to F' with the reduction
we have just described. Moreover we will denote with opt(F) and opt(G) re-
spectively the maximum number of clauses of F' that are satisfiable by a single
assignment and the optimum of the instance G.

The following lemma is the foundation of our inapproximability result.

Lemma 3.1. Let F be an instance of the MAXE3SAT-B problem with ng boolean
variables and mp clauses, and let G be the instance of MGRN that is associated
to F. Then it is possible to associate to any solution of F' with value x a solution
of G of value ng(B +1)+x. Vice versa it is possible to associate to any solution
of G of value ng(B + 1) + x a solution of F' of value at least x.
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Fig. 2. Three variables connected to an assignment gadget with B = 2. A-labeled edges
in solid lines, I-labeled edges in dashed lines

7

A
ct
I I I
(@) / (@) )) \O (0]
T S S S

Fig. 3. Encoding of the clause C; = 21 V z3 V —z3

Proof. Initially assume we have a solution of F'. Please notice that the vertices
that are relevant in computing the value of the solution are the vertices which
have both A-labeled and I-labeled arcs and, by construction, the only such ver-
tices are the assignment vertices and the vertices Cf.

Without loss of generality we can assume that all assignment vertices must
be controlled. In fact if all assignment vertices of two certain variable z; are
not controlled and i is odd, then we obtain a better solution by A-labeling z7
zl, | and Ilabeling =¥, zf,; (if i is even, then we have to A-label z7, zI | and
Ilabel zf, 2 ). Now all 2B + 2 assignment vertices of z; are now controlled,
but we do not know how many of the 2B clause gadgets to which z; and z; are

connected are controlled. In the worst case they all were controlled before the
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modification, and now none of them is controlled. Anyway after the modification
the total number of controlled is increased by at least two, so the new solution
is better than the previous one.

Now we can assume that all assignment vertices are controlled. This condition
is equivalent to say that, for each odd i, exactly one of z7 and zF is A-labeled
and exactly one of mzlrl and mﬂl is A-labeled, which can be shown by trying all
possibilities.

Since exactly one of z7 and zf is A-labeled, we can assume that the labeling
encodes a truth assignment, that is z; is true if and only if z7 is A-labeled. By
construction each vertex C']2 is controlled if and only if at least one of the variable
vertices to which it is connected is A-labeled, which in turn means that the
assignment of corresponding variables makes the clause C; true. Consequently
the number of vertices C'Jz that are controlled is exactly z, where z is equal to
the number of clauses that are satisfiable.

Now we are able to prove the second part of the lemma. Assume that we have
a solution of G with value ng(B + 1) + z. Then, just as for the first part of the
proof, it is immediate to obtain a solution of F' with value at least x.

An immediate corollary of Lemma 3.1 is that if the instance F' of MAXE3SAT-
B is satisfiable, then the instance G of MGRN has optimum ng(B + 1) + mp.

4 An Explicit Upper Bound

The starting point of our reduction is the MAXIMUM EXACT 3-SATISFIABILITY
(MAXE3SAT) problem, where the instance is a boolean formula where each
clause contains exactly 3 literals. For such problem some strong inapproxima-
bility results are known; in fact Hastad [4] has proved that for every > 0, it is
NP-hard to distinguish a satisfiable instance of MAXE3SAT from an instance
where at most 7/8+ ¢ of the clauses can be simultaneously satisfied; we will call
such problem a gapped version of MAXE3SAT.

Bulding upon the last result by Hastad, Trevisan [8] has devised a stochastic
reduction from an instance I of MAXE3SAT to an instance F' of MAXE3SAT-B,
that is in F' each literal appears in at most B clasuses. In the following we will
denote by I, F and G respectively an instance of MAXE3SAT, MAXE3SAT-
B and MGRN. Morever we will denote by n, m respectively the number of
variables and of clauses of I, by ng, mp respectively the number of variables
and of clauses of F. Consequently the maximum number of vertices of G that
might be controlled is (B + 1)ng + mp. The probabilistic reduction of [8] has
the following properties:

1. if I is satisfiable then F' is satisfiable;

2. for any sufficiently large B, then with probability at least 3/4 — o (1) over
the random choices made in the construction of F', if there is an assignment
that satisfies at least a fraction 7/8 4 5/v/B of the clauses of F, then there
is an assignment that satisfies at least a fraction 7/8 + 1/+v/B of the clauses
of I; furthermore mpg > (g — 4) ng.
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Following the same ideas of [8], we will give a probabilistic reduction from in-
stances of MAXE3SAT to instances of MGRN. Our reduction is actually a com-
position of the reduction in [8] (i.e. a reduction from MAXE3SAT to MAXE3SAT-
B) and the reduction proposed in Sect. 4 (i.e. a reduction from MaXE3SaT-B

to MGRN). Now we are ready to prove the fundamental feature of the our
probabilistic reduction from MAXE3SAT to MGRN.

Lemma 4.1. Let I be an instance of MAXE3SAT with n variables and m clauses,
and let G be instance of MGRN associated to I by our reduction. Then for suf-
ficiently large B and with probability at least 3/4—o(1), if there is a label assign-

15
ment to the verti G such that at least | 1 — —5& B+1
ent to the vertices of G such that at leas ( IT?I\%T ((B+1)ng+mp)
vertices are actually controlled, then at least (7/8 + 1/\/—B—) m clauses of I can
be satisfied.

Proof. Let I be an instance of MAXE3SAT and let us suppose there exists
a label assignment a to vertices of G such that its measure m (a) is at least

5

1- 2 _¥E B+1 th > (8 -4 ith probabilit

TM)“ +1)ng +mp), then mp > (5 —4) np with probability
)

at least 3/4 — o(1). Consequently
1_ .5
8
m(a) > (1 - e 62({31)> ((B+1)ng +mp) >

1_ 5
> (1———8—@——) ((B+1)npg +mp) =

Il
I

((B+1)ng+mp) =

1 5 7 5
= B+1 - = — = s+—=
my + (B +1)np 8m3+\/§m3 (B+1)n3+(8+\/§)m3
By Lemma 3.1 there exists a solution of F satisfying at least (7/8+5/ VB)mp
clauses. Applying the second property of the reduction in [8], there exists (with

probability at least 3/4 —o(1)) a solution of I satisfying at least (7/8+ 1/v/B)m
clauses.

The following corollary is our main contribution.

Corollary 4.2. For any 6§ > 0, it is not possibile to approzimate the MGRN
problem within a factor 1 — —1-1% + 6, unless NP=RP.

Proof. First notice that it is not possible to approximate the MGRN prob-
1 5

lem within a factor 1 — rjé%i% unless NP=RP. Otherwise we could solve
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the gapped version MAXE3SAT with a polynomial-time probabilistic algorithm.

In fact let I be an instance of such gapped version, and let G be the in-

stance of MGRN associated to I. If the solution returned by the approxima-
1.5

tion algorithm has value more than | 1 — ﬁ(sﬁ%") ((B+1)ng +mp) then,
B—4e

by Lemma 4.1, with probability 3/4 — o(1), I is a satisfiable instance of gapped

MAXE3SAT. Otherwise the solution returned by the algorithm has value at most

1_ .5

(1 — &%—) ((B 4+ 1)ng + mp) consequently, with probability 1, at most a
—4e

fraction 7/8 + d of the clauses are satisfied, hence we would have an algorithm

in RPfor the gapped version of MAXE3SAT. This would imply that NP=RP.

Without loss of generality we can restrict our interest only to large values of
1__5
B. Since limp_,oo1 — ——¥B, =1 — 11+§ , for any § > 0 taking a sufficiently

B+1l)e
1+Z(B—4J)

large B completes the proof.
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