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Optoelectronic Devices

Design, Modeling, and Simulation

With a clear application focus, this book explores optoelectronic device design and
modeling through physics models and systematic numerical analysis.

By obtaining solutions directly from the physics-based governing equations through
numerical techniques, the author shows how to design new devices and how to enhance
the performance of existing devices. Semiconductor-based optoelectronic devices such
as semiconductor laser diodes, electro-absorption modulators, semiconductor optical
amplifiers, superluminescent light-emitting diodes and their integrations are all covered.

Including step-by-step practical design and simulation examples, together with
detailed numerical algorithms, this book provides researchers, device designers, and
graduate students in optoelectronics with the numerical techniques to solve their own
structures.

Xun Li is a Professor in the Department of Electrical and Computer Engineering at
McMaster University, Hamilton. Since receiving his Ph.D. from Beijing Jiaotong Univer-
sity in 1988, he has authored and co-authored over 160 technical papers and co-founded
Apollo Photonics, Inc., developing one of the company’s major software products,
“Advanced Laser Diode Simulator”. He is a Member of the OSA and SPIE, and a
Senior Member of the IEEE.



Preface

Over the past 30 years, the world has witnessed the rapid development of optoelectronic
devices based on 11I-V compound semiconductors. Past effort has mainly been directed
to the theoretical understanding of, and the technology development for, these devices in
applications in telecommunication networks and compact disk (CD) data storage. With
the growing deployment of such devices in new fields such as illumination, display, fiber
sensor, fiber gyro, optical coherent tomography, etc., research on optoelectronic devices,
especially on those light emitting components, continues to expand with the pursuit of
many experimental explorations on new materials such as group-III nitride alloys and
I1-VI compounds and novel structures such as quantum wires, dots, and nanostructures.

As the manufacturing technology becomes mature and standardized and few uncer-
tainties are left, design and simulation become the major issue in the performance
enhancement of existing devices and in the development of new devices. Recent progress
in numerical techniques as well as computing hardware has provided a powerful platform
that makes sophisticated computer-aided design, modeling, and simulation possible. So
far, the development of optoelectronic devices seems to replicate the history of electronic
devices: from discrete to integrated, from technology intensive to design intensive, from
trial-and-error experiments to computer-aided simulation and optimization.

The purpose of this book is to bridge the gap between the theoretical framework and
the solution to real-world problems, or, more specifically, to bridge the gap between
our knowledge acquired on electromagnetic field theory, quantum mechanics, and semi-
conductor physics and optoelectronic device design and modeling through advanced
numerical tools.

Advanced optoelectronic devices are built on compound semiconductor material sys-
tems with complicated geometrical structures; they are also operated under varying
conditions. For this reason, we can find hardly any easy, intuitive, and analytical solu-
tions to the first-principle-based governing equations that accurately describe the closely
coupled physical processes inside such devices. Although solutions are relatively easy
to obtain from the equations derived from the phenomenological model, assumptions
have to be made in such a model, which often ignores some important effects and fails to
achieve quantitative agreement between theoretically predicted and practically measured
results.

Therefore, obtaining the solution directly from the physics-based governing equations
through numerical techniques seems to be a promising approach to bridge the gap as
mentioned above, as not only a qualitative, but also a quantitative matching between
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the theory and experiment is achievable. This book is intended for readers who want to
link their understanding of the device physics through the theoretical framework they
have already acquired to the design, modeling and simulation of real-world devices and
innovative structures.

This book will focus on semiconductor-based optoelectronic devices such as laser
diodes (LDs), electro-absorption modulators (EAMs), semiconductor optical amplifiers
(SOAs), and superluminescent light emitting diodes (SLEDs) in various applications.
Numerical methods will be used throughout the analysis of these devices.

Derived from physics-based first principles, governing equations will be given for the
description of different physical processes, such as light propagation, optical gain gen-
eration, carrier transport and thermal diffusion, and their interplays inside the devices.
Different numerical techniques will be discussed in detail along with the process of seek-
ing the solution to these governing equations. Discussions on device design optimizations
will also be followed, based on the interpretation of the numerical solutions.

The methodology introduced in this book hopefully will help its readers to learn (1)
how to extract the governing equations from first principles for the accurate description
of their devices; and more importantly, (2) how to obtain the numerical solution to those
governing equations once derived. Practical design and simulation examples are also
given to support the approaches used in this book.

I am in debt to my colleague and friend, Professor W.-P. Huang, who showed me the
prospect of computer-aided design, modeling and simulation in this field 15 years ago,
and with whom I had countless stimulating discussions on almost every topic involved in
this book, from the material physics to waveguide theory, from the model establishment
to result interpretation, and from the modeling methodology to numerical algorithm. I
would like to thank Dr. T. Makino (former Nortel), Dr. K. Yokoyama (former NTT), Dr.
T. Yamanaka (NTT), Dr. C.-L. Xu (RSoft Inc.), Dr. J. Hong (Oplink Inc.), Dr. A. Shams
(former Photonami Inc.), Professor S. Sadeghi (University of Alabama at Huntsville),
Professor W. Li (University of Wisconsin at Platteville), Professor Y. Luo (Tsinghua
University), Professor Y.-H. Zhang (Arizona State University), Ms. T.-N. Li (InPhenix
Inc.), Ms. N. Zhou (AcceLink Co.), Mr. M. Mazed (IP Photonics Inc.), Professor T.
Luo (University of Minnesota), Professor C.-Q. Xu (McMaster University), Professor
M. Dagenais (University of Maryland at College Park), Dr. J. Piprek (former University
of California at Santa Barbara), and many other colleagues and friends in this field, for
numerous insightful and inspiring discussions and interactions on various subjects in this
book, during and after our research collaborations. I am grateful to Ms. Y.-P. Xi, who
helped me with the simulation of SOAs and SLEDs, and Mr. Q.-Y. Xu, who helped me
with the simulation of crosstalks in the integrated DFB laser and monitoring photodetec-
tor. I am also grateful to Professor S.-H. Chen (Huazhong University of Sci. and Tech.)
and her graduate students, who helped me to create most of the schematic diagrams in the
firsteight chapters and all the three-dimensional device structure drawings in Chapters 10
and 12. Twould also like to thank my graduate students and many other graduate students
in the Department of Electrical and Computer Engineering at McMaster University who
took my course on this subject, for their valuable comments and suggestions. Finally, I
appreciate the constant help and great patience of Dr. J. Lancashire and Ms. S. Koch.
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1.2

Introduction

The underlying physics in device operation

Figure 1.1 shows the major physical processes and their linkages in the operation of
optoelectronic devices.
To capture these physical processes, we need the following models and knowledge:

(1) a model that describes wave propagation along the device waveguide (electromag-
netic wave theory);

(2) a model that describes the optical properties of the device material platform
(semiconductor physics);

(3) amodel that describes carrier transport inside the device (quasi-electrostatic theory);

(4) amodel that describes thermal diffusion inside the device (thermal diffusion theory).

Therefore, the above four aspects should be included in any model established for
simulation of optoelectronic devices.

Modeling and simulation methodologies

There are two major approaches in device modeling and simulation.
(1) Physics modeling: a direct approach based on the first principle physics-based model.

The required governing equations in the preceding four aspects are all derived from
first principles, such as the Maxwell equations (including electromagnetic wave theory
for the optical field distribution and quasi-electrostatic theory for the carrier transport),
the Schrodinger equation (for the semiconductor band structure), the Heisenberg equation
(for the gain and refractive index change), and the thermal diffusion equation (for the
temperature distribution).

This model gives the physical description of what exactly happens inside the device
and is capable of providing predictions on device performance in every aspect, once the
device building material constants, the structural geometrical sizes, and the operating
conditions are all given.

This approach is usually adopted by device designers who work on developing devices
themselves.
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Fig. 1.1.
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The physical processes and their linkages in the operation of optoelectronic devices. Noted in
brackets are the first principle equations that govern these processes.

However, such a modeling technique is usually complex and sophisticated numerical
tools have to be invoked in solving the equations involved. Computationally it is usually
expensive.

(2) Behavior modeling: an indirect approach based on an equivalent or phenomenolog-
ical model.

The governing equations in the preceding four aspects are extracted from first prin-
ciples under various assumptions. Hence they are greatly simplified compared with the
equations in the physics-based model. Those frequently used methods in the extraction
of the simplified equations include: (1) reducing or even eliminating spatial dimensions;
(2) neglecting the dependence that causes only relatively slow or small variation; and
(3) ignoring the physical processes that have little direct effect on the aspects of inter-
est. Another method is to replace the original local or discrete variable by a global or
integrated variable in the description of the physical process, as the latter usually obeys
a certain conservation law, hence a corresponding balance equation can be derived in a
simple form.

This model does not give the description of what exactly happens inside the device
but is capable of providing the same device terminal performance as the physics-based
model. Therefore, if the device is treated as a black box, this model will provide the
correct output for any given input.

This approach is usually adopted by circuit and system designers who just use rather
than develop devices.
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1.3

1.4

Although this modeling technique is usually simple and computationally inexpensive,
it has two major drawbacks that prevent its application in device design and development.
The first demerit is that it can give hardly any physical insights. Little information can
be obtained on how to make a device work better by improving the design. The second
demerit is that it often relies on non-physical input parameters, such as effective constants
or phenomenologically introduced coefficients, which are usually difficult to obtain.

In optoelectronic device modeling, we normally take a combination of the preceding
two approaches. Depending on different simulation requirements, we usually retain a
minimum set of the necessary physics-based equations and replace the rest by simplified
ones.

Device modeling aspects

In device modeling, we normally look at the following aspects.

(1) Device steady state performance.
No time dependence needs to be considered in this simulation. The device character-
istics are usually modeled as functions of the bias.

(2) Device small-signal dynamic performance.
Based on the small-signal linearization, a direct current (DC) at a fixed bias plus a
frequency domain analysis are required in this simulation.

(3) Device large-signal dynamic performance.
A direct time-domain analysis is required in the simulation.

(4) Noise performance.
Either a semi-analytical frequency domain analysis or a numerical time-domain
analysis is required in this simulation.

Device modeling techniques

A typical procedure for optoelectronic device modeling and simulation includes:

(1) input geometrical structures;
(2) input material constants;
(3) set up meshes;
(4) initialize solvers (pre-processing);
(5) input operating conditions;
(6) scale variables (physical to numerical);
(7) start looping;
(8) call carrier solver;
(9) call temperature solver;
(10) call material solver;
(11) call optical solver;
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(12) go back to step 7 until convergence;
(13) scale variables (numerical to physical);
(14) output assembly (post-processing).

To start this procedure, however, one must have an initial device structure, which relies
on one’s understanding of the device physics and on one’s experience accumulated from
analysis and interpretation of the results obtained from device design, modeling and
simulation practice.

Other than the initial structure, we still need to collect all the input parameters required
by the numerical solvers. These parameters are usually obtained from open literature,
experiment, or calibration.

The following are a number of numerical techniques that are often involved in
optoelectronic device modeling:

(1) partial differential equation (PDE) solvers (boundary value and mixed boundary
and initial value problems);
(2) ordinary differential equation (ODE) solvers (initial and boundary value problems);
(3) algebraic eigenvalue problem solvers;
(4) linear and non-linear system of algebraic equations solvers;
(5) root searching routine;
(6) minimization or maximization routine;
(7) function evaluations, interpolation and extrapolation routines;
(8) numerical quadratures;
(9) fast Fourier transform (FFT) and digital filtering routines;
(10) pseudo-random number generation.

The key issue in device modeling is to establish numerical solvers for PDEs, which
usually follows a procedure as shown below.

(1) Scale the variables in given PDEs.
(2) Set up computation window and mesh grids.

(These two steps translate a physical problem into a numerical problem.)

(3) Equation discretization through, e.g., finite difference (FD) scheme.
(4) Boundary processing.

(These two steps translate PDEs into a system of algebraic equations.)
(5) Start Newton’s iteration for the system of non-linear algebraic equations.

(This step translates the system of non-linear algebraic equations into a system of linear
algebraic equations.)

(6) Find solution to the system of linear algebraic equations.
Direct method (for moderate size or dense coefficient matrix).
Iterative method (for large size sparse coefficient matrix).
Convergence acceleration (for iterative method).
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(7) Convergence acceleration for Newton’s iteration.
(The numerical solution will be obtained after this step.)
(8) Scale variables and post processing.

(A physical solution will be obtained after this step.)

Overview

This book is divided into three parts. The first part, comprising Chapters 2, 3, 4, and
5, is on the derivation and explanation of governing equations that model the closely
coupled physics processes in optoelectronic devices. The second part, Chapters 6, 7, 8,
and 9, is devoted to numerical solution techniques for the governing equations arising
from the first part and explains how these techniques are jointly applied in device simu-
lation. Chapters 10, 11, and 12 form the third part, which provides real-world design and
simulation examples of optoelectronic devices, such as Fabry—Perot (FP) and distributed
feedback (DFB) LDs, EAMs, SOAs, SLEDs, and their monolithic integrations.
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2.1

2.1.1

_Optical models

The wave equation in active media

Maxwell equations

The behavior of the optical wave is generally governed by the Maxwell equations

V x E(F, 1= —%B(?, 1), 2.1
Vx HF, )= g;lj(f, N+ JF, 0, (2.2)
V-D(F, 1) = p(F.0), (2.3)
V- B(F, 1) =0, (24)

where E and H indicate the electric and magnetic fields in V/m and A/m, respectively, r
and 7 represent the space coordinate vector and time variable, respectively, D the electric
flux density in C/m?, B the magnetic flux density in Wb/m?, J the current density in
A/m?, and p the charge density in C/m>.

In semiconductors, the constitutive relation reads

4
D(F, 1) :/ e(F,t — 1) E(F, 1)dr, (2.5)

B(F,t) = uoH(®, 1), (2.6)

with e and p¢¢ denoting the time domain permittivity of the host medium and permeability
in a vacuum in F/m and H/m, respectively.
Noting that

e(7,n =eold() + x(7, 1), (2.7)

with g9 denoting the permittivity in a vacuum in F/m and y the dimensionless time-
domain susceptibility of the host medium, equation (2.5) can also be written as

t
D@F, 1) = go/ [6(t — 1)+ x(F,t — D) E(F, v)dt = o E(F, t) + P(F, 1), (2.8)

o0



