as 1 Second

as a Second
Language

For Native Speakers
of Pascal

Tomasz Miuldner

Acadia University

Nova Scotia, Canada
<

Peter W Steele.

A Lo i1 versity
)y . Scotin ¢ anada

A
A AN
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney Singapore
Tokyo Madrid Bogota Santiago San Juan

This book is in the Addison-Wesley Series in Computer Science

Michael A. Harrison, Consulting Editor

The programs and applications presented in this book have been in-
cluded for their instructional value. They have been tested with care,
but are not guaranteed for any particular purpose. The publisher does
not offer any warranties or representations, nor does it accept any li-
abilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Miildner, Tomasz.
C as a second language.

1. C (Computer program language) 1. Steele, Peter W.
I1. Title.
QAT76.73.C15M8&5 1988 005.13’3 86-28837
ISBN 0-201-19210-1

UNIX is a trademark of Bell Laborataries, Incorporated. MS-DOS is a
registered trademark of Microsoft Corporation. Macintosh is a trade-
mark licensed to Apple Computer, Inec. Many of the designations used
by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Ad-
dison-Wesley was aware of a trademark claim, the designations have
been printed in caps or initial caps.

Copyright ©1988 by Addison-Wesley Publishing Company, Inc. All
rights reserved. No part of this publication may be reproduced, stored
in a retrieval system or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada.

ABCDEFGHIJ-HA-8987

Preface

C was originally designed in 1972 by Dennis Ritchie at AT&T Bell Labo-
ratories [Rit78]. The first implementation was on a DEC PDP-11; today,
C compilers are available for almost all computers, including main-
frames, minicomputers, and microcomputers. The popularity of C has
grown tremendously over the past years; indeed, it is one of the most
popular languages in use today, with a wide variety of applications, such
as editors, compilers, databases, and operating systems (in particular,
Unix [Rit78]), being written in the language.

This book is called C as a Second Language because it is designed for
readers who already have experience in programming in Pascal [Jen78]
and want to learn to program in C. It is still possible to read the book
without knowing Pascal, but a good knowledge of some high-level pro-
gramming language is necessary.

The book is for students, professional programmers, and computer
hobbyists studying C on their own. It is especially suited to students
who are either required to study C or who will be entering some high-
level computer science courses, such as operating systems or compilers,
in which a knowledge of C may be needed.

Our main goal in this text is to show how to write reliable programs in
C and how to translate programs from Pascal to C.

A secondary (but not neglected) goal in designing this book was to
provide the reader with easy reference to various topics when program-
ming in C.

Another goal is to use a portable C, which in practice means that we
have used the Kernighan and Ritchie standard [Ker78]. Many exten-
sions of this standard have appeared, for example, those described in
ANSI C [Ans86]: void procedures, enumeration types, and so on. We
have described most of the common extensions but have also made it
clear that they are nonstandard. (As of the writing of this book, the
ANSI C standard has not been completed.)

The first step in learning C is to understand its syntax. We help the
reader through this step by comparing C constructs with Pascal’s corre-
sponding constructs.

The second step is to understand thoroughly the semantics of the lan-
guage. Here, our approach is to show several small C programs, explain
their semantics, and warn what the typical pitfalls are.

The last step is to develop a programming style. For this, we show
larger programs written in a style often used by C programmers. This

v

vi Preface

style is in places concise, but we have avoided “tricky” code even if this
could result in less efficient code.

The book has two basic parts. The first part (Chapters 2-11) is an in-
troduction to C that encompasses the goals of the first two steps men-
tioned above. Since C is likely to be new to the reader, these chapters
concentrate on the language itself. The algorithms are fairly simple,
sometimes even trivial, so the reader does not have to spend time trying
to understand the data structures and algorithms being used.

The second part (Chapters 12-14) assumes a basic understanding of
the underlying concepts of C that were introduced in the first part. We
continue to discuss programming techniques in C and present additional
features of C through examples of larger programs. The topics pre-
sented and the data structures and algorithms covered in this part are
more advanced.

Important features of the book include:

¢ A thorough and detailed description of the C programming lan-
guage and programming techniques, including a comparison of C
and Pascal constructs and coverage of advanced topics such as the
dangling reference problem, heap compaction, and others.

e Early introduction of pointers and complete, detailed description
of relations between pointers and arrays, functions, and strings
(Chapters 7, 8, 10).

e Implementation in C of data structures and algorithms such as:
linked lists (both pointer based and array based), an array imple-
mentation of a stack, an open hash table implementation of a dic-
tionary, an adjacency list representation of a graph, a bit-vector
implementation of a set, techniques to manage files containing
structured data, memory management with heap compaction, inter-
nal and external search techniques, a “virtual” sort that can be ap-
plied to arrays of any type of element, and an implementation of an
external binary search tree with file compaction.

e Various implementations of C under three different environments:
Unix, MS-DOS, and the Macintosh. We show how to use specific
compilers in each of these environments (Chapter 14). Then through
programming examples, we discuss such topics as: I/0 redirection,
error handling, and low-level file I/0 under Unix; the ANSI C stan-
dard, MS-DOS services, directories, and file attributes under MS-
DOS; window and menu management on the Macintosh.

Pedagogical Aids

Each of the ten introductory chapters begins with a review of Pascal
constructs, which describe such concepts as the system stack and the
heap as they relate to standard Pascal [Co083]. Following each review is

Preface vii

a glossary of terms, which should be understood before studying the
rest of the chapter. In some instances, the reader may start reading a
chapter from the glossary, referring to the Pascal review only if needed.
(For more detail on the basic concepts of programming languages, refer
to “Programming Languages: Design and Implementation” by Pratt
[Pra84].)

Our book teaches C through examples. We offer more than 100 com-
plete programs, varying from one as simple as finding the maximum of
two integers to one that implements an external binary search tree.
Most examples (with the exception of those in Chapter 14 on real sys-
tems) are written in a portable style. Each chapter closes with lists of
things to remember and common errors made by novice C pro-
grammers. We also provide over 100 exercises and give solutions to all
odd-numbered exercises.

Chapter 1 gives some basic definitions used throughout the book, such
as the run-time system of a language. It also briefly compares Pascal
and C. Chapter 2 is on primitive data types and basic terminal I/0.
Chapter 3 describes control structures, and Chapter 4 is an introduction
to file I/0 (which is discussed further in Chapters 12 and 14). Chapter 5
is on preprocessing; Chapter 6 describes functions and scope rules;
Chapter 7 is on pointers; and Chapters 8 and 9 define arrays, structures,
unions, and enumeration types. Chapter 10 describes C string opera-
tions, and Chapter 11, bitwise operations. Chapter 12, a continuation of
Chapter 4, discusses additional details of text and binary file I/0. Chap-
ter 13 presents some application programs:

e A calculator program, which shows the implementation of linked
lists and open hash tables

e An implementation of Dijkstra’s algorithm to find the shortest path
in a graph, which also shows the implementation of sets and graphs

e A database program, which shows the implementation of external
binary search trees

Chapter 14 describes through several examples the use of C under some
real systems—Unix, MS-DOS, and the Macintosh.

Appendices contain a list of C keywords and a complete description of
C’s syntax (Appendix A), precedence and associativity tables (Appendix
B), a detailed description of formatted I/0 (Appendix C), and an ASCII
table (Appendix D). Appendix E contains solutions to the odd-numbered
programming exercises. Appendix F consists of a table comparing Pas-
cal and C, and Appendix G contains a summary of the standard library
functions. We provide a program index to allow easy reference to any
program in the book.

A disk containing complete source code of all examples may be or-

viii Preface

dered from the authors. A check for $30 (payable to one of the authors)
may be sent to Doctor Tomasz Miildner or Professor Peter Steele, ¢/o
School of Computer Science, Acadia University, BOP 1X0O Wolfville,
NS Canada. For classroom adoptions of 25 or more, contact your local
Addison-Wesley representative.

Acknowledgments

We wish to thank a number of people who helped us complete our work.
Our colleague Dr. Rick Giles carefully read the first draft and made a
number of useful suggestions. Many thanks to our students: Bill Nicker-
son, who helped us debug most of our programs; Donna Cleveland, who
helped prepare some of the exercises; Gilbert Verghese and Barbara
Miildner, who suggested many corrections in the early versions of the
manuscript; Steven Langlois, our last but most thorough proofreader;
and finally, the winter 1985 class of Computer Science 2023 at Acadia,
the first students we tested our book on. Also, special thanks to our col-
league Dr. Wayne Brehaut for his help with many grammatical aspects
of the manusecript.

We would as well like to thank the four software companies that al-
lowed us to review their products: Lattice Incorporated for Lattice C;
Rational Systems, Inc. for Instant-C; Manx Software Systems, Inc. for
Aztec C; and THINK Technologies, Inc. for LightspeedC.

We would also like to express our appreciation to the following re-
viewers of the manuscripts: Andrew W. Appel, Princeton University;
Judith D. Boxler, Vancouver Community College; David Cohrs, Univer-
sity of Wisconsin, Madison; Jon Forrest, Britton Lee, Inc.; Michael A.
Harrison, University of California, Berkeley; Raj Nagendra, Ryerson
Polytechnical Institute; Paul W. Ross, Millersville University; Henry
Ruston, Polytechnic University, Brooklyn.

Nova Scotia Tomasz Miildner
Canada Peter Steele

Contents

CHAPTER 1 Introduction 1
1.1 About C 1

1.2 A Brief Comparison of Pascal and C 2

1.3 The Computer’s Memory 5

1.4 Preprocessing, Compilation, and Linking 7

1.5 Include Files 8

CHAPTER 2 Primitive Data Types and Terminal I/0 11
2.1 Lexical Structure 13

2.2 Primitive Data Types, Assignment 14

2.3 The Main Program 17

2.4 Constants 18

2.5 Arithmetic Expressions 21

2.6 Terminal Input/Output 23

2.7 Type Conversions, New Data Types: typedef 30

Exercises 34

CHAPTER 3 Control Structures 39
3.1 Boolean Expressions and Precedence Rules 40

3.2 The if Statement 44

3.3 Iterative Statements 48

3.3.1 The while Statement 49

3.3.2 The do Statement 51

3.3.3 The for Statement 52

3.4 The switch Statement 55

3.5 The goto and return Statements 59

Exercises 61

CHAPTER 4 An Introduction to File I/0 65
4.1 File Operations in C 67

4.2 Testing for End-of-Line and End-of-File 70

Exercises

79

ix

Contents

CHAPTER 5 The C Preprocessor 83
5.1 Parameterless Macros 84
5.2 Macros with Parameters 89
5.3 File Inclusion 94
5.4 Conditional Compilation 96
5.5 Line Numbering 100
Exercises 102

CHAPTER 6 Functions and Procedures 105
6.1 Function Definition 108
6.2 Function Parameters 115
6.3 Scope 119

6.3.1 Global Variables 119
6.3.2 Storage Classes 122
6.3.3 Blocks 124
6.4 Separate Compilation 125
6.5 Initialization 132
Exercises 133

CHAPTER 7 Pointers 135
7.1 Declaring Pointers 141
7.2 Dereferencing Pointers and the Address Operator 143
7.3 Pointer Assignments and Conversions 143

7.3.1 General Concepts 143
7.3.2 Pointer Conversions 148
7.3.2.1 Memory Alignment 149

7.3.2.2 The Representation of Pointers 150

7.4 Pointers and Functions 151
7.4.1 The Dangling Reference Problem 151
7.4.2 Call by Reference 152
7.4.3 Pointers to Functions and Functions as Parameters 156
7.4.4 Declarators—Part 1 161

7.5 Pointer Arithmetic 167
7.5.1 The Sum of a Pointer and an Integer 169
7.5.2 Difference Between a Pointer and an Integer 174
7.5.3 Pointer Comparison: <, <=, > >= == I= 174
7.5.4 Pointer Subtraction 177

7.6 Memory Allocation and Deallocation 178
7.7 Simulating Arrays and Records 185

Exercises

190

Contents

xi

CHAPTER 8 Arrays 195
8.1 Single-Dimensional Arrays 198
8.1.1 Array Definitions and Indexed Variables 198
8.1.2 Arrays and Pointers 201
8.1.3 Dynamic Arrays 210
8.1.4 Arrays as Function Parameters 211
8.1.5 Another Dangling Reference Problem 218
8.1.6 Declarators—Part 2 219
8.2 Multi-Dimensional Arrays 227
8.2.1 Array Definitions and Indexed Variables 227
8.2.2 Representation of Arrays in Memory 228
8.2.3 Two-Dimensional versus Single-Dimensional Arrays 231
8.2.4 Alternative Representations of Two-Dimensional
Arrays 231
8.2.5 Two-Dimensional Arrays as Function Parameters 239
8.3 Initialization of Arrays, External Arrays 242
Exercises 246
CHAPTER 9 Structures, Unions, and Enumeration Types 253
9.1 Structures 256
9.1.1 Structures and Pointers 260
9.1.2 Structures and Functions 266
9.1.3 Initialization of Structures 272
9.2 Unions 273
9.3 Enumeration Types 278
9.4 Declarators—Part 3 282
Exercises 283
CHAPTER 10 Strings 287
10.1 Strings in C 291
10.1.1 How to Define Strings 292
10.1.2 Formatted String I/0 293
10.1.3 String Constants 295
10.2 Implementation of String Operations 296
10.2.1 Implementation of Standard C String Operations 298
10.2.2 Implementation of Other String Operations 305
10.3 Additional String I/0 Routines 309
10.4 Arrays of Strings 314
10.5 Main Function Arguments 318
10.6 Character Processing Macros and Functions 323

Exercises

326

xii

Contents

CHAPTER 11 Bitwise Operations and Bit Fields 331
11.1 Bitwise Operations 331
11.2 Bit Fields 336
Exercises 338

CHAPTER 12 File I/0 Revisted 341
12.1 File Operations 343

12.1.1 Error Checking 343
12.1.2 Current Position in a File 344
12.1.3 Opening and Closing Files 345
12.1.4 File Input and Output 347
12.1.4.1 Single Character 1/0 347

12.1.4.2 Formatted File 1/0 348

12.1.4.3 String I/0 349

12.1.4.4 Block Character 1/0 349

12.1.5 Terminal I/0 Operations 350

12.2 Applications 350
12.2.1 Saving and Retrieving an Array of Structures 351
12.2.2 Saving and Retrieving Linked Lists 357
12.2.3 Random Access Operations 361
Exercises 363

CHAPTER 13 Applications to Data Structures 365

13.1 A Calculator with User-Defined Variables 365
13.1.1 A Pointer Implementation of Singly Linked Lists 368
13.1.2 Linked Lists of Objects of Variable Sizes 372
13.1.3 Open Hash Table 373
13.1.4 Array Implementation of ADT Stack 378
13.1.5 The Main Program 380

13.2 A Calculator with Built-in Functions 386

13.3 A Memory Management System with Compaction 390

13.4 Dijkstra’s Shortest Paths Algorithm 401
13.4.1 Adjacency List Implementation of ADT Graph 402
13.4.2 Cursor Implementation of ADT List 402
13.4.3 Bit-Vector Implementation of ADT Set 405
13.4.4 The Main Program 408

13.5 A Simple Database 411
13.5.1 A File Organized as a Binary Search Tree 412

Exercises

420

Contents

xiii

CHAPTER 14 Some Real Systems 423
14.1 Unix 423
14.1.1 I/0 Redirection and Environment Strings 424
14.1.2 Abnormal Termination 427
14.1.3 Low-Level File Operations 431
14.2 MS-DOS 437
14.2.1 Lattice C 437
14.2.1.1 The ANSI C Standard 440
14.2.1.2 MS-DOS Services 442
14.2.1.3 MS-DOS Directories 445
14.2.1.4 File Attributes 448
14.2.1.5 Memory Operations 456
14.2.2 Instant-C 457
14.3 The Macintosh 461
14.3.1 Macintosh Programming Issues 461
14.3.2 Aztec C 463
14.3.2.1 The Compiler 464
14.3.2.2 Writing Macintosh Applications with
Aztec C 465
14.3.3 LightspeedC 473
14.3.3.1 The Compiler 474
14.3.3.2 Writing Macintosh Applications with
LightspeedC 476
14.3.4 Final Words 486
REFERENCES 487
APPENDIX A Special Characters, Keywords, and
Syntax 489
APPENDIX B Precedence and Associativity Tables 493
APPENDIX C Formatted Input and Output 495
APPENDIX D The ASCII Character Set 503
APPENDIX E Answers to Odd-Numbered Exercises 507
APPENDIX F Comparison Between Pascal and C 551
APPENDIX G System Library Summary 557
INDEX 561

Introduction

PREVIEW

This chapter introduces some basic notions that you may need to under-
stand later chapters. First of all, we briefly describe C and then com-
pare Pascal with C. Next, we discuss the representation of the integer
and character data types in memory. Finally, we present the concept of
a run-time system, include files, and conditional and separate compila-
tion in C.

1.1 ABOUTC

C is often referred to as a low-level high-level language because it pro-
vides many tools that allow low-level operations to be performed. As a
result, C programs have gained a reputation for being unstructured and
difficult to read. In some respects, this reputation may be deserved, but
to say it is an exclusive trait of C is unfair. Unreadable programs can be
written in any programming language without much difficulty. Further-
more, like a true high-level language, C provides many high-level fea-
tures, and with some discipline, programs written in C can be as struc-
tured and readable as programs written in Pascal. Another important
characteristic of C is that most implementations are very efficient.

C provides the typical primitive data types: character, integer, and
real. It also provides structured data types: arrays, records, and unions.
A complete set of control structures is provided, including conditional,
selective, and iterative statements. Functions may be recursive, al-
though they may not be textually nested. Programs may be divided into
separately compiled modules, and a flexible set of scope rules exists to
assist in this sort of modularization. One of the main strengths of C is its
approach to pointers, and many language constructs (such as call by ref-
erence) are implemented using pointers. Standard I/0 is provided by
run-time libraries, which makes it easier to port compilers to other ma-
chines. C does not provide any high-level data types like those in Ada
[Ada83], nor any tools for parallel programming.

For many years, the definition of the C language given by Kernighan
and Ritchie [Ker78] was the accepted standard definition. Today, C is
being standardized by the American National Standards Institute Sub-

1

2 Introduction

committee (ANSI) [Ans86]. Fortunately, most of the proposals in the
ANSI C definition are extensions to the Kernighan and Ritchie stan-.
dard, and most existing implementations today comply with Kernighan
and Ritchie, with some newer compilers adopting aspects of ANSI C.
Therefore, with a little effort, it is possible to write “almost” portable
programs, and only minor changes, if any, are needed to port programs
from one machine to another.

1.2 A BRIEF COMPARISON OF PASCAL AND C

In this section, we briefly compare Pascal and C constructs. Our pur-
pose is not to give you detailed information about any specific constructs

but to give you a general idea of what the C programming language is
like.

Identifiers and Comments

The syntax of identifiers is almost identical in both languages except
that in C an underscore _ is allowed, and they are case sensitive. Com-
ments are similar as well:

Pascal C

(* comment *) /* comment */

Program Modules and Scope

A program in C is a sequence of functions. One function must be called
main; it is from this function that the execution of the program starts.
Although the scope rules in C are Pascal-like, C functions may not be
textually nested; however, they may contain blocks (compound state-
ments containing declarations as well as statements). Unlike Pascal,
subroutines in C are always defined as functions, although any function
may be called as a procedure, in which case the value returned by the
function is disregarded. As in Pascal, functions in C may be recursive. A
simple example:

PROGRAM one;

PROCEDURE proc; void proc()
BEGIN
WRITE('Hello'); printf('"Hello");
END; }
FUNCTION func : INTEGER; int func()
BEGIN {
func := 3; return(3);

END; }

1.2 A Brief Comparison of Pascal and C 3

VAR i : INTEGER; int i;
BEGIN main() {
proc; proc();
i := func; i = func();
WRITE(i); printf("ga", i);
END.

The preceding C program has three functions defined: main, proc, and
func.

Unlike standard Pascal, C supports separate compilation of func-
tions; the keyword extern specifies an object that is defined in another
file.

Data Types and Declarations, Parameters
Pascal supports the primitive data types integer, real, boolean, and
character. C supports the types int, float (which is the same as real
in Pascal), and char. C has no type boolean, although any nonzero in-
teger value is equivalent to true, and zero is equivalent to false. More-
over, C provides a special qualifier 1ong, which can be used to define
double precision integers having approximately twice as many signifi-
cant digits; similarly, C provides a type double to define double preci-
sion reals.

The syntax of declarations in C is the reverse of that in Pascal; for ex-
ample,

VAR 1 : INTEGER; int 1;

VAR ¢ : CHAR; char c;
In C, data can be initialized in definitions; for example,
int 1 = 3;

Pascal supports structured data types array, record, and file, and C
supports the same types, although files are not predefined in the lan-
guage; instead they are defined in the system library.

Examples
VAR arr : ARRAY [0..3] OF INTEGER int arr(4];
rec : RECORD struct {
i : INTEGER; int 1i;
r : REAL; float r;

END } rec;

4 Introduction

Function definitions are similar, although formal parameter spemﬁca-
tions are in different places; for example,

PROCEDURE proc(i:INTEGER); void proc(i)
int i;
{
VAR j:INTEGER; int j;
BEGIN
j =1+ 3; j=1+ 3;
END }

Pascal supports two modes of parameter transmission—call by value
and call by reference. C supports only call by value; call by reference
must be simulated using pointers.

Expressions and Statements

Expressions in C are similar to those in Pascal except that types may be

freely intermixed with automatic type conversion taking place.
Operators and other constructs are similar, but there are some minor

syntactic differences:

Equality: = ==
Inequality: <> =
Logical AND: AND &&
OR: OR v
NOT: NOT !
Assignment: X = 3*(y+6); x = 3*(y+6);
Conditional statement: IF a>5 THEN a:=a-b if (a>b) a=a-b;
ELSE b:=a; else b=a;
Iteration statements: WHILE x>0 DO %:=x-1; while (x>0) x=x-1;
REPEAT x:=x+2 do x=x+2;
UNTIL x>100; while (!(x>100));
FOR i:=1 TO 10 DO for (i=1; 1<=10; it++)
x[1] := 0; x[i] = 0;
Selection statement: CASE i OF switch (i) {
11 j :=3; case 1: j = 3;
break;
2: j = j-1; case 2: j—;
break;
END; h
Compound statement: BEGIN s7; ... ;sk END {s1;...;8k}
Return from a function: func := exp; return(exp) ;

end (* function ¥)

1.3 The Computer’s Memory 5

Pointer declaration: VAR p : "INTEGER; int *p;

Pointer dereferencing: p” *p

Access to record fields: rec.field rec.field

Record pointer access: recpnter”.field recpnter—>field

A single dimensional array in C is considered a pointer to the memory
block allocated for this array. C allows arithmetic on pointers; for exam-
ple, if x is a single dimensional array, x+1 refers to the second element
of the array. A function name without parentheses is also a pointer, in
this case a pointer to the code of this function.

Other C Constructs

C supports macros with parameters. These macros are expanded before
compilation of the program. The C preprocessor also handles file inclu-
sion and conditional compilation.

1.3 THE COMPUTER’S MEMORY

A computer’s memory consists of a number of words. Each word con-
sists of a number of bytes, and each byte consists of a number of bits
(usually 8, though not always). For example, 16-bit words consist of two
8-bit bytes, and 64-bit words consist of eight 8-bit bytes.

For the most part, we assume that each memory location is one byte
in size and that a single character may be stored in a byte. This is usu-
ally referred to as a byte-oriented memory architecture and is the most
common architecture in use today, with machines such as the VAX-11
and IBM 360 and their successors using it. Machines that support so-
called word-oriented architectures are less common. In these architec-
tures, the smallest addressable unit is a word rather than a byte. For
example, on the DEC-20, each memory location is 36 bits in size, and on
the Cyber 180, each location is 60 bits in size.

From a language designer’s viewpoint, the primary difference be-
tween a byte-oriented architecture and a word-oriented one is that in a
byte-oriented machine, as we mentioned, a single memory location typi-
cally can hold only one character value, whereas in a word-oriented ma-
chine, a single memory location can hold several characters. For exam-
ple, on the DEC-20, each memory location can hold five 7-bit characters,
with one bit left over. This may cause certain difficulties for a language
designer if portability is a concern. Many of the examples in this text
should work on any machine regardless of its memory architecture.
However, some examples are designed for the more common byte-ori-

