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Preface

These are the proceedings of the conference “Symbolic Computation,
Number Theory, Special Functions, Physics and Combinatorics” held at
the Department of Mathematics, University of Florida, Gainesville, from
November 11 to 13, 1999. The main emphasis of the conference was Com-
puter Algebra (i.e. symbolic computation) and how it related to the fields of
Number Theory, Special Functions, Physics and Combinatorics. A subject
that is common to all of these fields is g-series. We brought together those
who do symbolic computation with g-series and those who need g-series in-
cluding workers in Physics and Combinatorics. The goal of the conference
was to inform mathematicians and physicists who use g-series of the latest
developments in the field of g-series and especially how symbolic computa-
tion has aided these developments.

Over 60 people were invited to participate in the conference. We ended
up having 45 participants at the conference, including six one hour plenary
speakers and 28 half hour speakers. There were talks in all the areas we were
hoping for. There were three software demonstrations.

Plenary Lectures:

George Andrews (Pennsylvania State University)
“Search algorithms in the study of g-series”

Ken Ono (Pennsylvania State University and the University of Wiscon-
sin at Madison)

“Congruences for p(n) and some questions of Serre on the Fourier coef-
ficients of modular forms”

Barry McCoy (Institute for Theoretical Physics, Stony Brook)
“Rogers-Ramanujan identities in statistical mechanics and conformal
field theory”

Doron Zeilberger (Temple University)
“A tutorial on Mint: Akalu Tefera’s brilliant fully-automated implemen-
tation of the continuous multi-WZ method”

Sergei Suslov (Arizona State University)
“Basic Fourier series: Introduction, analytic and numerical investiga-
tion”

Dennis Stanton (University of Minnesota)
“Open problems in g-series”

vii
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The papers in this volume represent many of the topics covered at the con-
ference. Although Bill Gosper and Mike Hirschhorn were unable to attend
the conference, they were able to contribute papers to these proceedings.
The order of articles is alphabetical by author.

We would like the thank the sponsors of our conference: the Institute for
Fundamental Theory (University of Florida), the National Science Founda-
tion, the National Security Agency, the UF Department of Mathematics and
The Number Theory Foundation. We would also like to thank Denise Marks
(University of South Florida) for typing some of the papers.

Frank G. Garvan
University of Florida, Gainesville
March 8, 2001.

Mourad E. H. Ismail
University of South Florida, Tampa

March 8, 2001.
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Polynomials and the Solution of the Pulse Width Modulation Problem, was delivered by Mourad
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GAUSSIAN HYPERGEOMETRIC SERIES
AND COMBINATORIAL CONGRUENCES

Scott Ahlgren
Department of Mathematics, Colgate University, Hamilton, New York 13846

sahlgren@mail.colgate.edu

Abstract We study the Gaussian hypergeometric series of type s F» over finite fields
Fp. For each prime p and each A € Fp, we explicitly determine p®3 F3(\),
(mod p?). Using this perspective, we are able to give a direct proof of one
of Beukers’ conjectured “supercongruences” between certain Apéry numbers
and the coefficients of a weight three modular form of CM type. Finally, we
record many new supercongruences of this form.

Keywords: Gaussian hypergeometric series, Apéry numbers

1. INTRODUCTION

In a recent paper [1], the author and K. Ono study the “Gaussian” hyper-
geometric series 4F3(1), over the finite field F,. They describe relationships
between values of these series, Fourier coefficients of modular forms, and
the arithmetic of a certain algebraic variety. These relationships, together
with tools from p-adic analysis and some unexpected combinatorial identi-
ties, lead to the proof of one of Beukers “supercongruence” conjectures for
the Apéry numbers A(n) := >"7_, (2)2("Zk)2

Our purpose in this paper is to investigate similar phenomena for the
hypergeometric series 3F3()),. We begin by recalling some definitions. If p
is an odd prime, then let F, be the field with p elements. We extend each
multiplicative character x of F, to I, by defining x(0) := 0. If A and B are

two such characters, then we define the normalized Jacobi sum (g) by

A\ _ B(-1) - B(-1) AB(L— o
(B> == J(A,B)_——p x%F:,.A( )B(1 — ).

1
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Let Ao, A1,...An, and By, By, ...B, be characters of F,. Following Greene
[5], we define the Gaussian hypergeometric series over F, by

Ao, A1, ..., A, ) P (AOX) (Alx) <AnX)
vt Py = — T
+1 ( Bi, .... B,|*® , p—l; x J\Bix Box) X
(1.1)

(here the sum runs over all characters x of F,). Let ¢, and €, denote the
quadratic and trivial characters of Fy, respectively, and define ,11F,(z), by

nt1Fn(2)p 1= np1 Fy (%’ GRERE fpl 95) .
y - P B

€p ey

In what follows, the prime p will be clear from context. Therefore we will
sometimes suppress the subscript p in our notation.
For odd primes p, define the quantities

=1

5T p=1y 2 2=l g
o =E () (%

=0

=1 ol b=l (1.2)
T poIN? pol sl R
po=3(7) () s Zdve 5

J=0
All of the results in this paper are consequences of the following
Theorem 1. If p is an odd prime and A € Q\ {0} has ord,(\) > 0, then

P*3F2(N)p = A(p, A) + pB(p, ) (mod p?).

Consider the family of elliptic curves
sEa(A) 1 ¥ = (e -1)(a+2), AeQ\{0,-1}, (1.3)

and let L(3E3()),s) =3 oo, "’—aﬁn’:il be the usual Hasse-Weil L-function for
3E2(A). Ono [11, Thm. 5] proved that if p is an odd prime and A € Q\{0,1}
has ord,(A(A — 1)) = 0, then

3az(p, ,\1T1)2 =p+¢p(1=2A) 'P23F2(’\)p

(we have made a change of variables in the curves which Ono calls 3FE2(A)
in order to simplify notation). Together with Theorem 1, this yields
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Corollary 1. Suppose that p is an odd prime and that A € Q \ {0,1} has
ordy(A(A = 1)) = 0. Then

302(p, x27)° = (1 = N A, ) +p+p- (1 — N)B(p,A) (mod p?).

By a theorem of Hasse, we know that |saz(p, 25)| < 2,/p. This yields the
following curious corollary.

Corollary 2. Ifp is an odd prime and A € Q\{0, 1} has ord,(A(A—1)) =0,
then the quantity

(1 =X A, A)+p+p-d,(1 — X)B(p, A

is congruent modulo p? to one of the numbers 0,1,2,3, .. L4p—1.

We remark that a similar phenomenon occurs for another family of elliptic
curves. In particular, define the curves

2B1(0) ¢y =2(@-1)(z-2), AeQ\{0,1},

and let L(aE1(X),s) = > 02, %F\l be the associated L-function. Then
combining Proposition 5 and Theorem 1 of [11] (see also [10, Prop. 1])
yields the following result.

Theorem 2. If p is an odd prime and A € Q\ {0, 1} has ord,(A(A—1)) =0,
then

201(p, \) = %(—1)2 (:5_1) ('1’5—1; j) (=3)¢ {mod b,

In the latter part of the paper, we consider the topic of “supercongru-
ences”. For n > 0, define the Apéry number

b(n) := Xn: (Z) 2(": k) (1.4)

k=0

Beukers made the following

Conjecture. (Beukers, [2]) Suppose that p > 5 is a prime. Then we have

p(e=1) = 0 (mod p?) if p=3 (mod 4),
2 = 2 _ 2\ sfa 2 2 ; (1'5)
4a® —2p (mod p?) if p=a?+ b? and a is odd.

We will give a proof of the following result.
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Theorem 3. The conjecture is true.

This theorem had already been proved in the case p =3 (mod 4) by Van
Hamme [13], and in the general case by Ishikawa [7]. Our proof is direct, and
is of interest since it sheds some light on the relationships between the su-
percongruence, special values of Gaussian hypergeometric series, and certain
unexpected combinatorial identities which arise in its proof (see Theorem 4
below).

In the last section we will attempt to insert Beukers’ supercongruence (1.5)
into a larger framework by giving eight new examples of supercongruences
of the same form. The combinatorial sums which arise in the new congru-
ences are somewhat more complicated than the quantity b(p;—l) of Beukers’
original conjecture; this difference is explained by the combinatorial iden-
tities (Theorem 4 below) which intervene in the latter case. It seems that
the common thread in these supercongruences is the presence of a weight
three modular form with complex multiplication. The quantity on the right
side of (1.5), for example, defines the pth Fourier coefficient of the weight
three CM form 7°(4z) (here 7(z) denotes Dedekind’s eta-function). Such a
modular form lies in the background of each of the new examples which we
give.

Acknowledgements

The author is indebted to Peter Paule and Carsten Schneider at RISC-Linz
for sharing their expertise, and for performing the computations necessary
to prove Theorem 4.

2 PRELIMINARIES

In order to prove Theorem 1, we will use the Gross-Koblitz formula [6]
in order to develop the first two terms in the p-adic expansion of 3F3(A)p.
In this section we collect some preliminaries on Gauss sums and the p-adic
gamma function.

The gamma function is defined on the ring Z, of p-adic integers by

Tp(n):=(-1)* [] 4, forneN,
i<n, plj
Pylz) = 7111_% [p(n), for z € Z,,.

We have the fundamental facts, which may be found, for example, in [8]:

n! = (=1)"*T,(n + 1), 0<n<p-1,
Tp(z)| =1, =ze€Z, (2.2)

~~
N
—
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Further, if 2 € Z,, and R(z) denotes the representative of z (mod p) in
the set {1,...,p}, then we have

Tp(@)Tp(1 - 2) = (~1)FE), (2.3

The following are known for p > 5 (see [3], or [1, section 6] for (2.5)):
¢=y (modp") = Ip(z) =Tp(y) (modp®)  (¢,y€Zp n2> (1), :
24
[yp(@0+2) =Ty(z0) (modp) (20 € Zy, 2] < |pl), (2.5)
Tp(zo + 2z) = Tp(0) + 2T (z0) (mod p?) (zo € Zyp, |2| < |pl). (2.6)

Finally, define G(z) := %EL;;. Then if z € Z, we have G () € Z,. Further,

Glz+1) - G(z) = % foez, [|o=1 2.7)

We also require some background on Gauss sums. Let # € C, be a fixed
root of 2P~ + p = 0, and let {, be the unique p-th root of unity in G, such
that ¢, = 1+ 7 (mod 72). Then for a character x : F, = C,, we define
the Gauss sum g(x) = >.P§ x(z)¢;. We have the following well-known
properties:

(1) 9()9(¥) = x(=1)p.
(2) If x; and x2 are not both trivial, but x1x2 = €, then J(x1,x2) =
_Xl(_l)-

9(x1)g9(x2)

3) If €, then J = e s
(3) If xaxz # (X1, Xx2) 9(x1x2)
Let w denote the Teichmiiller character; w is a primitive character which is
defined uniquely by the property that w(z) =z (mod p) forz =0,...,p—1.
Then the Gross-Koblitz formula [6] states that

9(@) = —-='T, (p%l) 0<j<p-2 (2:8)
3. PROOF OF THEOREM 1

For simplicity, we break the proof into a number of lemmas. Recall that
G(z) is the logarithmic derivative of ['y(z).

Lemma 3.1. If p is an odd prime and A € Q\ {0} has ord,(A) > 0, then



