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MODELING IN MATERIALS PROCESSING

Mathematical modeling and computer simulation have been -widely
embraced in industry as useful tools for improving materials processing.
Although courses in materials processing have covered modeling, they
have traditionally been devoted to one particular class of materials, that
is, polymers, metals, or ceramics. This text offers a new approach, pre-
senting an integrated treatment of metallic and nonmetallic materials. The
authors show that a common base of knowledge — specifically, the funda-
mentals of heat transfer and fluid mechanics — provides a unifying theme
for these seemingly disparate areas. Emphasis is placed on understanding
basic physical phenomena and knowing how to include them in a model.
Thus, chapters explain how to decide which physical phenomena are im-
portant in specific applications, and how to develop analytical models. A
unique feature is the use of scaling analysis as a rational way to simplify
the general governing equations for each individual process. The book also
treats selected numerical methods, showing the relationship among the
physical system, analytical solution, and the numerical scheme. A wealth
of practical, realistic examples are provided, as well as homework exercises.
Students, and practicing engineers who must deal with a wide variety of
materials and processing problems, will benefit from the unified treatment
presented in this book.

Jonathan A. Dantzig is Professor of Mechanical Engineering, Department
of Mechanical and Industrial Engineering, University of Illinois at Urbana-
Champaign. His research focuses on materials processing — especially
solidification and casting processes, finite element methods, heat transfer,
and fluid dynamics.

Charles L. Tucker III is W. Grafton and Lillian B. Wilkins Professor,
Department of Mechanical and Industrial Engineering, University of
Illinois at Urbana-Champaign. His research interests include the process-
ing of polymers and composite materials, the modeling and simulation of
manufacturing processes, and the use of numerical methods.



Preface

After some years of teaching separate courses on metal solidification and polymer
processing, we realized that the two subjects shared a substantial base of common
material. All the models started with the same basic equations and were built by
using the same general procedure. We began to teach a single course on materials
processing, and we found that our unified treatment gave students a better overall
perspective on modeling. We also discovered that we needed a new book, as existing
texts were almost all devoted exclusively to polymers, or to metals, or to ceramics.
In this book, we treat metal and polymer processing problems together, building
around the transport equations as a unifying theme.

We were also dissatisfied with ad hoc model development, in which terms were
arbitrarily dropped from the governing equations, or simplifications were made with-
out a clear explanation. Simplifying the general governing equations is a critical step
in modeling, but it is a skill, not an art. In this text we introduce scaling analysis as a
systematic way to reduce the governing equations for any particular problem. Scaling
provides a way for both novices and experts to simplify a model, while ensuring that
all of the important phenomena are included.

After deriving the governing equations in their general form and introducing
scaling analysis, we examine physical phenomena such as heat conduction and fluid
flow. We work out many problems that include only a few of these phenomena —
problems that can be solved analytically. One might call these “canonical problems.”
They allow the reader to study each phenomenon in isolation, and then to explore how
that phenomenon interacts with others. Real processes frequently involve multiple
physical phenomena, and the ability to isolate a single phenomenon and understand
its role is one of the great benefits of modeling. Canonical problems help students
place different phenomena in perspective, and give them the ability to anticipate
which phenomena will be important in any particular process. We once overheard
a student describe our materials processing course as “the place where you finally
understand what they taught you in heat transfer and fluid mechanics.” We hope so.

We present examples for many different materials and processes, including poly-
mer extrusion and injection molding, as well as metal casting and microstructure
development. In each example we begin with the governing equations, and we use
scaling to arrive at the final set of equations to be solved. This systematic approach
makes problems for many different materials accessible.
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Of course, most practical materials processing models require a numerical solu-
tion, and any accomplished modeler knows a great deal about numerical methods.
We chose not to say much about numerical methods, preferring to give solid coverage
to the governing equations and physical phenomena. However, our canonical prob-
lems provide excellent test cases for numerical solution methods, and we use them
to demonstrate some of the pitfalls of numerical modeling. By showing examples in
which numerical schemes may be inaccurate or unstable, we help the reader become
a more intelligent user of modeling software.

There is a lot to learn here, and many of the exercises at the end of each chapter go
beyond the examples in the chapter. These exercises are written in a way that guides
the student through the problem, step by step. This style emphasizes the overall
pattern of problem solving, and it allows students to do more complex problems
than they could otherwise attempt. A full set of solutions is available to instructors
who adopt the book as a course text. Please contact the authors for the Solutions
Manual.

We started writing this book to distill the important lessons from our own ex-
perience, one of us in polymer processing and the other in metal solidification. We
eventually found that knowing more about modeling of all types of materials made
us better at modeling the materials and processes we were so familiar with. We hope
you will have the same experience.

Jonathan A. Dantzig
Charles L. Tucker I11
Urbana, Illinois
November 1, 2000
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Jo, Ji  Bessel functions of the first kind, of order zero and one

k thermal conductivity (tensor)

k thermal conductivity (scalar)

ko partition coefficient

L length

Ly primary dendrite arm length
L¢ latent heat of fusion
L, latent heat of pressure change

Ly latent heat of volume change

L velocity gradient tensor, L;; = 0v;/dx;
y2 filled length of a mold

m material constant in the power law model

mg,mg  slopes of the liquidus and solidus lines
mass of a system; morphological number
power law index

unit vector normal to a surface

power input to a system

pressure

modified pressure = p + pogh

heat flux vector

volume flow rate; power of a point heat source; heat
input to a system

rotation matrix

radius; gas constant =8.31 J/mol K
specific heat generation rate
generation rate of species A

thermal resistance

cylindrical coordinates
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bounding surface; specific entropy; flow conductance
inverse of power law index=1/n
temperature; torque

melting temperature

liquidus temperature

solidus temperature

time

surface traction vector

unit vector tangent to a curve

velocity vector

volume; average velocity

specific volume
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vorticity tensor = (L — L7)/2
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thermal diffusivity = k/(oc))

volumetric thermal expansion coefficient

surface tension (interfacial tension)

scalar strain rate = (2D : D)/?

solidified layer thickness; boundary layer thickness
unit tensor in indicial notation (the Kronecker delta)
specific internal energy

permutation symbol

curvature of a curve; ratio of an outer radius to inner radius
mean and Gaussian curvatures of a surface
magnitude of the pressure gradient

dilatational viscosity, compressible Newtonian fluid
secondary dendrite arm spacing

viscosity, Newtonian fluid

kinematic viscosity = u/p

viscosity, non-Newtonian fluid

3.14159. ..

density

density at reference temperature and pressure
dimensionless temperature; angular coordinate
total stress tensor

extra stress tensor

scalar magnitude of T

yield stress

angular velocity

vorticity vector=V x v

scaled length within a boundary layer

similarity variable
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CHAPTER ONE

Introduction

1.1 WHAT IS A MODEL?

In recent years, modeling has been embraced by the materials processing community
as a tool for understanding and improving manufacturing processes. Models are often
implemented in computer programs, but there are important differences between a
model and the computer code that implements it. A model is a set of equations used
to represent a physical process. Finite element or finite difference methods, and the
computer programs that implement them, are techniques to solve the equations of
the model, but they are not the model itself. Our main emphasis will be on creating
models — on reducing a physical process to a set of equations — especially models
whose solution accurately describes the behavior of the process. Occasionally we also
will explore numerical solution methods, often to point out where unenlightened use
can lead you astray.

Whenever we create a model, we make assumptions about what phenomena
are important to the behavior of the physical process. This is both good and bad.
Assumptions help define the mathematical model and make it amenable to analy-
sis. However, incorrect assumptions and erroneous information become part of the
model and may well distort the results. Sometimes assumptions greatly simplify the
model and permit an easy solution, but they may also cause important physical phe-
nomena to be misrepresented or overlooked. Limiting the number of assumptions
helps to avoid this problem but may make the model overly complex. Then the solu-
tion becomes difficult, and important information may be obscured. Building a good
model requires making careful and informed decisions about the assumptions.

In this book we describe a systematic approach to modeling. We start from the
physical system and proceed through mathematical formulation to solution of the
model equations. We pay particular attention to the issue of choosing what assump-
tions to make. Our goal is to ensure that the reduction of the physical system to a
mathematical model is done correctly. We present the task of modeling as a series of
steps.

1. Define the scope and goals of the model.

2. Make a conceptual sketch and define basic quantities.

3. Develop a mathematical description of the conceptual sketch.

4. Write fundamental equations that govern the primary variables.
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Introduce constitutive relations between the primary variables.
Reduce the governing equations by making assumptions.

Scale the variables and governing equations.

Solve the remaining equations to infer the behavior of the system.

oo BN 4

In the following sections we present two simple examples to illustrate this stepwise
approach. The first example is a physical system whose mathematical model should
be quite familiar to the reader: a simple pendulum. The second example, a model
of traffic flow, examines a familiar physical situation, but it develops a mathematical
representation that will be new to most readers. These two problems provide concrete
examples of the overall approach, but they are simple enough to be easily followed.
In later chapters we apply this same stepwise approach to problems in materials
processing.

1.2 A SIMPLE PENDULUM

Consider the simple pendulum, constructed by connecting a mass to one end of a
string and fixing the string at its opposite end. We will now construct a mathematical
model of this system, following the procedure outlined above.

Step 1: Define the scope and goals of the model. The physical system is, of
course, the pendulum. Defining the goals is not as easy as it might seem, because this
requires us to decide what aspects of the system behavior are most important — at
least to us. Let us assume that we are going to use this pendulum as a timepiece, so
we are interested in computing its period of oscillation. Other aspects of the motion
are secondary.

Step 2: Make a conceptual sketch and define basic quantities. A sketch of the
pendulum is shown in Fig. 1.1. The figure defines some quantities that we will use
to analyze the system. The suspended mass is m, and gravitational acceleration g is
oriented vertically down the page. The distance from the fixed end of the string to
the center of the mass is r, and we introduce the variable 6 to represent the angular
position of the pendulum at any time ¢. Note that m and g are parameters of the

Figure 1.1: Conceptual sketch of a simple pendulum, showing
forces and primitive variables; e, and ey are the unit vectors in
the r and 9 directions.
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problems (i.e., they are constant for any specific pendulum), whereas r and 6 are
variables, because they may change as a function of time #; # itself is an independent
variable.

Step 3: Develop a mathematical description of the conceptual sketch. Asshown
in Fig. 1.1, a force due to gravity with magnitude mg acts on the mass. It is convenient
to resolve this force into radial and tangential components, as shown in the figure.
The tension in the string also exerts a force, which has only a radial component £;.
We also will need the acceleration of the mass in terms of r, 6, and their deriva-
tives. If both r and 6 change with time, then the radial component of acceleration is
# — ré%, and the tangential component is rf + 2/6; the dots indicate ordinary time
derivatives.

Step 4: Write fundamental equations that govern the primary variables. We
know that the motion of the mass will be governed by Newton’s law, f = ma. We
resolve the forces and accelerations into their r and 6 components, and we get two
equations:

m(¥ — réz) = mgcosf — F,
m(ré + 2i0) = —mgsin@ (1.1)

‘We also need initial conditions on r, 6, and their first derivatives. For the moment we
will just write the conditions for 6 and 6, which we choose as

9(1‘ = 0) = 90
6(t=0)=0 (12)

The initial angle 6 is an additional parameter in the problem.

Step 5: Introduce constitutive relations between the primary variables. The
governing equations are sufficient in this problem, and this step is not necessary. We
will take it up in the next example.

Step 6: Reduce the governing equations by making assumptions. There are
many reasons for making assumptions, each having its own inherent advantages
and dangers. We will indicate some of these as we make various assumptions.

In fact, we have already made two important assumptions implicitly. Let us now
state them explicitly.

e The mass of the string is negligible and the mass is concentrated at a point. The
analysis is simplified because now we need only consider a point mass, and we
can neglect such factors as the moment of inertia of the mass and string, and
their angular acceleration. (A different model that includes these factors, called
the physical pendulum, is well known.) Bear in mind, however, that we have
introduced attributes into the model that may not necessarily match those of the
real system.

® Friction has been neglected. Thus, our model represents a perpetual motion ma-
chine. Friction does play a role in determining the period of the pendulum, a
phenomenon explored in one of the exercises.

We will now further assume that the string has constant length (independent of
the tension F,), so that r = L for all time. Note that L is now another parameter
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of the problem. In the second of Egs. (1.1), we replace r by the constant L and set
# = 0, which allows us to compute 6(¢). The first of Egs. (1.1) reduces to an equation
to determine F, once 6 and 6 are known. The assumption of constant r reduces the
dimensionality of the problem, greatly simplifying the solution. However, it further
restricts the range of validity of our model.

Finally, we will limit our attention to small motions of the pendulum, that is, to
small values of the angle 8. When using words like “small,” one must define them
carefully in the context of the present problem. Here we define small as that range of
angles in which sin8 =~ 6. The error associated with this approximation is less than
1% for angles up to 14°. This assumption also greatly simplifies the problem, because
the remaining equation is now linear:

L 9 = —g9 (13)

We have finally obtained an equation we can easily solve. Notice how simple our
model of the pendulum has become in comparison to the real system.

Step 7: Scale the variables and governing equations. To scale a variable, one
divides the variable by its characteristic value, expressed in terms of the parameters of
the problem. This produces a new, dimensionless variable whose order of magnitude
is one. For example, the angle 6 has a characteristic value 6y. Using this, we define a
dimensionless variable ¢ as

0

¢ = % (1.4)

Note that 6, while dimensionless, was not scaled to be of order one. The new variable
¢ is order one because, in the absence of external forces, ¢ € [—1, 1].

The reasons for scaling and the methods for doing it will be discussed in Chapter 3.
For the time being let us simply accept that it is convenient if all of the variables in
the governing equation have been scaled to eliminate their dimensions and to make
them of order one.

We also need to scale the time variable, though it is not obvious how to get a time
scale from the problem parameters. We can deduce the time scale by going ahead
and defining a scaled time variable 7 as

T=— (1.5)

where ¢, is a characteristic time whose value we do not yet know. That is, we choose
to measure time in units that are somehow related to our model system, but we still
need to find how ¢, depends on the known parameters of the problem.

Next we scale the governing equation by recasting it in terms of the scaled vari-
ables. Applying the chain rule for differentiation shows that

d _ddt 1d

di =~ didi T rdr (16)
Similarly, the second derivative is
d* 1 d?
1.7)

dr2  12dq?
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Substitution of this expression into Eq. (1.3) transforms the governing equation to

()35

Now because ¢ is of order one, the right-hand side of Eq. (1.8) is of order one, and
thus the left-hand side of Eq. (1.8) side must be of order one as well. Because 7 is
of order one, we expect that d?¢/dt? on the left-hand side also will be of order one.
The only way this can be true is for the collection of parameters on the left-hand side
of Eq. (1.8) to equal one. From this we deduce that the characteristic time is

Ie =+ L/g (19)

This gives the characteristic value ¢, in terms of known parameters L and g. Now
all of our scaled variables are clearly defined, and the governing equation, Eq. (1.8),
simplifies to
d*¢
— = 1.10
dt? ¢ (1.10)
Note that scaling has given us an estimate for the period for the pendulum, without
ever solving a differential equation. This is one of the many benefits of scaling analysis.

The boundary conditions must also be scaled. Following the same procedure, we
find that Egs. (1.2) become

#(z =0)=1
P (e =0=0 (111)

Step 8: Solve the remaining equations to infer the behavior of the system. The
solution of Eq. (1.10) is given by

¢(t) =cisint+cpcost (1.12)

The two constants c¢; and ¢, are evaluated from the initial conditions, Egs. (1.11).
This gives the solution, in terms of the scaled dimensionless variables, to be

¢ =cost (1.13)

If desired, one can substitute Egs. (1.4) and (1.5) into Eq. (1.13) to express the solution
in dimensional form.

0 t

% cos(m) (1.14)
Inspecting these equations shows that our model of the simple pendulum undergoes
a simple harmonic motion of period t = 2x, or t = 27+ /L/g. This is the result we
were looking for.

At this point one might go back over the analysis, consider the validity of the
various assumptions, and explore the sensitivity of the results to those assumptions.
Usually this requires constructing and solving a new model without the assump-
tions, and comparing the results to the original model. The exercises at the end of



