i

INTERNATIONAL COMPUTER SCIENCE SERIES

SOFTWARE PROTOTYPINC
"FORMAL METHODS
AND VDM

Sharam Hekmatpour
Darrel Ince

SOFTWARE PROTOTYPING,
FORMAL METHODS
AND VDM

Sharam Hekmatpour

University of Melbourne

Darrel Ince

The Open University, Milton Keynes

A
vy
ADDISON-WESLEY
PUBLISHING
COMPANY

Wokingham, England - Reading, Massachusetts - Menlo Park, California
New York - Don Mills, Ontario - Amsterdam - Bonn
Sydney - Singapore - Tokyo - Madrid - San Juan

© 1988 Addison-Wesley Publishers Ltd
© 1988 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

The programs presented in this book have been included for their instructional
value. They have been tested with care but are not guaranteed for any particular
purpose. The publisher does not offer any warranties or representations, nor does
it accept any liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Addison-Wesley has made every attempt to
supply trademark information about manufacturers and their products
mentioned in this book. A list of the trademark designations and their owners
appears on page x.

Cover designed by Crayon Design of Henley-on-Thames and
printed by The Riverside Printing Co. (Reading) Ltd.
Printed in Great Britain by The Bath Press, Avon.

First printed 1988.

British Library Cataloguing in Publication Data
Hekmatpour, Sharam
Software prototyping, formal methods and
V.D.M. — (International computer science
series).
1. Computer systems. Software. Development.
Prototyping
I. Title I1. Ince, D. (Darrel) II1. Series
005.1

ISBN 0-201-17572-X

Library of Congress Cataloguing in Publication Data
Hekmatpour, S. (Sharam). 1961-
Software prototyping, formal methods, and VDM/Sharam Hekmatpour
and Darrel C. Ince.
p. c¢m. — (International computer science series)
Bibliography: p.
Includes index.
ISBN 0-201-17572-X
1. Computer software — Development. 1. Ince, D. (Darrel)
I1. Title. I11. Series.
QA76.76.D47H45 1988
005.1"1—dc19 88-19400
CIP

SOFTWARE PROTOTYPING,
FORMAL METHODS
AND VDM

INTERNATIONAL COMPUTER SCIENCE SERIES

Consulting editors A D McGettrick University of Strathclyde

J van Leeuwen University of Utrecht

SELECTED TITLES IN THE SERIES

Programming in Ada (3rd Edn) J G P Barnes

Software Engineering (3rd Edn) I Sommerville

The UNIX System SR Boume

Software Specification Techniques N Gehani and A D McGettrick (Eds)
Introduction to Expert Systems P Jackson

Programming Language Translation: A Practical Approach P D Terry
Data Abstraction in Programming Languages J M Bishop

UNIX System Programming K F Haviland and B Salama

PROLOG Programming for Artificial Intelligence I Bratko

Parallel Programming R H Perrott

The Specification of Computer Programs W M Turski and T S E Maibaum
Text Processing and Typesetting with UNIX D W Barron and M J Rees
Software Development with Ada I Sommerville and R Morrison

Syntax Analysis and Software Tools K J Gough

Concurrent Programming N Gehani and A D McGettrick (Eds)
Functional Programming A J Field and P G Harrison

Local Area Network Architectures D Hutchison

Comparative Programming Languages L B Wilson and R G Clark
Distributed Systems: Concepts and Design G Coulouris and J Dollimore
C Programming in a UNIX Environment J Kay and R Kummerfeld

An Introduction to Functional Programming through Lambda Calculus G Michaelson

Preface

Just a few years ago, rapid prototyping was an alien subject to software developers.
Today, there is hardly anyone in the software community who has not at least heard
of the term. Having recognized the importance of the concept, an increasing number
of software houses are now actively engaged in setting up working groups on
prototyping, and most international conferences on software engineering and
Human—Computer Interface are devoting entire sessions to the subject. Although
general interest in this area has risen dramatically and research has been intensified,
there is still a serious shortage of material on the subject as well as software tools to
support it.

This book aims to alleviate some of these shortcomings. It first introduces the
reader to rapid prototyping by examining the state of the art, and then describes a
prototyping methodology based on formal methods of software development. The
latter is supported by a wide-spectrum language, embedded in a UNIX-based
prototyping environment called EPROS, which enables very rapid generation of
working prototypes from a formal description of a system.

The book is intended for four classes of readers: researchers in software
engineering, developers who use formal methods of software development,
industrial staff who are looking for viable prototyping techniques, and university
lecturers who are interested in using a software tool in their formal methods and
prototyping courses. Apart from the first three chapters, which are of introductory
nature, the rest of the book assumes that the reader is familiar with the Vienna
Development Method (VDM) formal specification notation. No attempts have been
made to teach VDM in detail, since there are already two excellent introductory
books on the subject [Jones 1980a, Jones 1986]. We have also assumed that the
reader is familiar with the notion of programming in general and a high level
programming language like C or Pascal in particular.

The organization of this book is as follows. Chapter 1 provides some
motivation and explains why prototyping is important. Chapter 2 discusses
prototyping in more depth and provides a categorization of approaches to
prototyping. Chapter 3 describes a number of prototyping techniques in some
detail. Chapter 4 gives an overview of the EPROS prototyping system, its
development procedure and the wide-spectrum language it is based on, and

vi PREFACE

describes the available facilities in some detail. The use of the specification notation
is illustrated by a case study in Chapter 6. Chapters 7, 8 and 9 describe the
implementation, user interface development, and meta abstraction facilities of
EPROS, respectively. The final chapter describes a second case study which puts
the described techniques into practice. The last version of the prototype developed
in this chapter may be found in Appendix B. Appendix A serves as a reference
manual for EPROS, and describes the formal syntax of its notation, its libraries,
and its command language.

S. Hekmatpour and D. Ince
June 1988

Acknowledgements
The authors and publishers would like to thank the following:

® Association for Computing Machinery for permission to quote from
McCracken, D.D. and Jackson, M. A. 1982. ‘Life cycle concept
considered harmful,” ACM SIGSOFT Software Engineering Notes,7(2)
pp. 29-32.

® Elsevier Science Publishers for permission to quote from Bally, L.,
Brittan, J. and Wagner, K.H. 1977. ‘A prototype approach to information
system design and development,’ Information and Management, 1
pp. 21-26.

® Oxford University Press for permission to reproduce material written by
the authors and previously published in Zorkoczy, P.1. (ed.) 1986.
‘Rapid software prototyping,’ Oxford Surveys in Information
Technology, 3 pp. 37-76.

A note on language

For reasons of simplicity, the pronoun ‘he’ is used to relate to both male and female through-
out the book.

Contents

Preface

Chapter 1

1.1
1.2
1.3
1.4

Chapter 2

2.1
2.2
2.3

2.4

o

Chapter 3
3.1

Introduction

The life cycle model
Deficiencies of the life cycle
The prototyping solution
Summary

Rapid Software Prototyping

What is prototyping?

Applications of prototyping
Categorizing prototyping

2.3.1 Throw-it-away prototyping
2.3.2 Evolutionary prototyping
2.3.3 Incremental prototyping
Prototyping activities

2.4.1 The establishment of prototyping objectives
2.4.2 Function selection

2.4.3 Prototype construction

2.4.4 Evaluation

Benefits and difficulties of prototyping
Summary

Techniques of Prototyping

Function prototyping

3.1.1 Executable specifications

3.1.2 Very high level languages

3.1.3 Application oriented very high level languages
3.1.4 Functional programming languages

3.1.5 The tool-set approach

3.1.6 Reusable software

10
10
11
12
13
13
13
14
14
15
16

17

17
18
20
22
23
24
25

vii

vili CONTENTS

3.2

Chapter 4

4.1
4.2
4.3

4.4
45

Chapter 5

5.1
5.2

5.5

5.7

User interface prototyping

3.2.1 Simulation

3.2.2 Formal grammars

3.2.3 State transition diagrams
3.2.4 Other formal methods

3.2.5 Screen generators and tools
3.2.6 Language supported facilities
Discussion

Summary

The EPROS Prototyping System

The approach and its scope

The development procedure

The EPROL wide spectrum language
4.3.1 Functional specification notation
4.3.2 Dialogue specification notation
4.3.3 Design notation

4.3.4 Implementation notation

The architecture of the system

Summary

Functional Specification

The Vienna development method
Logic

5.2.1 Quantifiers

Abstract objects

5.3.1 Sets

5.3.2 Lists

5.3.3 Mappings

Abstract syntax

5.4.1 Trees

Combinators

5.5.1 The let expression

5.5.2 The if-then-else expression
5.5.3 The mac expression

5.5.4 The cases expression
Abstract data types

5.6.1 Specification

5.6.2 Refinement

5.6.3 Verification rules

5.6.4 Polymorphic types
Summary

36

36
39
39
40
40
40
41
41
44

55
55
56
56
56
57
57
60
61
62
63

CONTENTS ix

Chapter 6 Case Study 1: A Cross Usage Program 64
6.1 Problem specification 64

6.2 Refinement of specification 72

6.3 Discussion 80

6.4 Summary 81
Chapter 7 Implementation 82
7.1 Statements 82

7.1.1 Assignment 83

7.1.2 Control structures 83

7.1.3 Loop structures 84

7.1.4 Blocks 85

7.1.5 Assertions 85

7.2 Data types 85

7.2.1 Arrays 86

7.2.2 Files 86

7.2.3 Forms 86

7.2.4 Databases 86

7.3 Input and output 87

7.3.1 Ordinary I/O 87

7.3.2 Window-oriented I/O 88

7.3.3 Pretty printing 88

7.4 Imperative functions 89

7.5 Summary 90
Chapter 8 User Interfaces 91
8.1 State transition diagrams 91

8.1.1 The piaALOGUE module 93

8.1.2 Anexample 95

8.2 Pop-up menus 97

8.2.1 The menu statement 98

8.2.2 The switch statement 100

8.3 Electronic forms 102

8.3.1 The form module 102

8.3.2 Anexample 103

8.4 Discussion 107

8.5 Summary 107
Chapter 9 Clusters and Meta Abstraction 109
9.1 The need for clusters 109

9.2 The cluster module 111

9.2.1 The meta notation 112

9.2.2 Cluster schemes 113

x CONTENTS

9.3
9.4
9.5

9.6
9.7

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6

References

A cluster definition
Termination mechanisms
Application of clusters
9.5.1 Dialogue boxes
Discussion

Summary

Case Study 2: An Automated Library System

The problem

Formal specification of the system
Evaluation

Verification

Refinement of specification
Summary

Appendix A EPROS Reference Manual

Appendix B The Library System

Index

Trademark notice
UNIX™ is a trademark of AT & T.

VAX-11™ is a trademark of Digital Equipment Corporation.
Apple Macintosh™ is a trademark of Apple Computer Incorporated.

Miranda™ is a trademark of Research Software Ltd.

115
118
120
120
122
122

123

123
125
133
134
136
137

138

154

179

217

Chapter 1
Introduction

1.1 The life cycle model 3 The prototyping solution
1.2 Deficiencies of the life cycle 1.4 Summary

This chapter briefly describes some of the problems encountered
with those conventional software development techniques
associated with a phased software life cycle, and outlines how a
prototyping approach is capable of overcoming these problems.

1.1 The life cycle model

For the past twenty years or so, software system development has been based on a
model, commonly referred to as the software life cycle model [Zelkowitz er al.
1979, Boehm 1981, Sommerville 1982, Shooman 1982, Fox 1982]. Though
characterized differently by different authors, its overall theme is well understood
and universally acknowledged. The life cycle model leads to a software
development strategy which is usually called the phase-oriented, the linear or the
traditional strategy.

The life cycle model essentially advocates that software projects should
consist of a number of distinct stages. These are: requirements analysis,
requirements specification, design, implementation, validation, verification,

2 SOFTWARE PROTOTYPING, FORMAL METHODS AND VDM

operation and maintenance. Requirements analysis is concerned with deriving,
from the customer, the desired properties and capabilities of a proposed software
system. Requirements specification involves stating the system functions and
constraints in a precise and unambiguous way. Design is the task of producing,
and consequently refining solutions that satisfy the specification. Implementation
is the act of realizing the design in a programming language which can be executed
on the target machine. Validation is the process of checking that a system fulfills
its user requirements. Verification has the objective of ensuring that the end
product of each of the first four stages matches its input. Operation is the activity
of installing and running a completed system in its intended environment. Lastly,
maintenance is the process of modifying a system, during its operational lifetime,
to correct detected errors, improve performance, and incorporate newly emerging
requirements.

The life cycle model was originally derived from the hardware production
model of requirements, fabrication, test, operation and maintenance [Blum 1982]. It
primarily reflects management concerns in production, such as planning, control,
budget expenditure and resource allocation. Its aim is to provide a basis for
estimating the correct distribution of labour and capital over a well planned period
of time by dividing the production process into a number of rationalized phases,
each with its own milestones and deliverables.

Central to the model is its linear structure; with exception of validation and
verification, all other stages are carried out linearly, i.e., each stage begins only
when the previous stage has been completed. The model works very well in
hardware production; its appropriateness for software development, however, is
becoming increasingly questionable.

1.2 Deficiencies of the life cycle

Software producers who currently use the life cycle model have to cope with three
unpleasant facts: (i) the earlier an activity occurs in a project the poorer are the
notations used for that activity, (ii) the earlier an activity occurs in a project the less
we understand about the nature of that activity, and (iii) the earlier an error is made
in a project the more catastrophic the effects of that error. For example, early
requirements and specification errors have typically cost a hundred to a thousand
times as much as those made during implementation [Boehm 1981], and have lead
to a number of multi-million dollar projects being cancelled.

Increasing user dissatisfaction with software since the early nineteen seventies
has motivated researchers to pay greater attention to the earlier stages of software
development [Ramamoorthy ez al. 1984]. As a result, many requirements analysis
and specification techniques have been invented [Davis and Vick 1977, Ross and
Schoman 1977, Taggart and Tharp 1977, Levene and Mullery 1982, Lehman and
Yavneh 1985], some of which are even computerized [Smith and Knuth 1976,
Teichroew and Hershey 1977, Bell et al. 1977]. At the same time there is a rapidly

INTRODUCTION 3

increasing interest in formal, more mathematical methods of software development
which adherents claim lead to more reliable systems which have an increased
probability of meeting user needs [Musser 1979, Davis 1979, Jones 1980b,
Silverberg 1981].

Unfortunately, even when a software developer uses modern notations and
techniques, success is likely only when the application is both well understood and
supported by previous experience [Bally et al. 1977, Blum and Houghton 1982,
Brittan 1980]. The current rate of growth in hardware has meant that each year
large numbers of new applications emerge for which the old knowledge is
inadequate. Faster and larger, cheaper memories mean that computers are being
used in novel projects where the relation of the computer to its environment, to
human operators, and to other computers has not been researched adequately. Many
such projects are based on specifications which are not true reflections of the
customer’s requirements. This is due to three reasons.

First, there is usually a significant cultural gap between the customer and the
developer and the way they communicate [Christensen and Kreplin 1984].
Consequently, a customer often finds it extremely hard to visualize a system by
simply reading a technical system specification document [Gomaa and Scott 1981,
Mayr et al. 1984]. If the customer is unable to visualize such a system then
validation during the early part of the project becomes a very error prone activity.
Indeed, the difficulties involved in communication with the user can be a serious
barrier to proper development [McCracken and Jackson 1982]:

“The life cycle concept perpetuates our failure so far, as an industry, to
build an effective bridge across the communication gap between end-
user and system analyst. In many ways it constraints future thinking to
fit the mold created in response to failures of the past.’

Second, the customer, unfamiliar with information technology, may have produced
very vague requirements which could be interpreted arbitrarily by the developer
[Brittan 1980]. Third, empirical evidence [Ackford 1967] suggests that once a user
starts employing a computer system, many changes occur in his perception as to
what the intended system should do; this obviously invalidates the original
requirements. As a result, user requirements are often a moving target, and
producing a system that meets them is a risky and error prone activity.

A further complication is that a software project of considerable size may take
many years to complete; during this time the user requirements, as well as the user
environment, may change considerably, making the final system even more
obsolete [McLean 1976, Gladden 1982, Ramamoorthy et al. 1986]. This is
graphically described by [Blum 1982]: ‘Development is like talking to a distant star;
by the time you receive the answer, you may have forgotten the question.’

The life cycle model is strongly based on the assumption that a complete,
concise and consistent specification of a proposed system can be produced prior to
design and implementation. The validity of this assumption has been challenged
and refuted by a number of authors [Swartout and Balzer 1982, McCracken and

4 SOFTWARE PROTOTYPING, FORMAL METHODS AND VDM

Jackson 1982, Shaw 1985]. In many cases a complete specification cannot be
produced, simply because the user does not really know what he wants [Berrisford
and Wetherbe 1979, Parnas and Clements 1986].

Lack of experience in projects where it is almost impossible to construct a
precise specification leads to the situation where the customer requirements can be
established only when a complete software system has been built and when the
system can be examined in a fully concrete form [Blum and Houghton 1982]. For
this reason many systems end up being written at least twice. To quote Brooks
[1975]: ‘Plan to throw one away; you will, anyhow.’

There are numerous examples in the literature of substantial modifications of
systems during maintenance because of inadequate requirements analysis. For
example, it has been reported [Boehm 1974] that in some large systems up to 95%
of the code had had to be rewritten to meet user requirements. Even more formal,
improved techniques and notations for requirements specification are not helpful in
this respect, as the transition from the user conceptual model of a system to a
specification of the system is an inherently informal process [Leibrandt and
Schnupp 1984].

All evidence, therefore, suggests that the life cycle model has many
shortcomings which may have adverse effects on software projects. This is, of
course, not to say that this model should be rejected outright. To the contrary, in
certain areas, such as embedded software and real time control systems, it is the
most rational approach and indeed the best way of controlling the complexity of
such projects. However, for the majority of other applications, especially those
related to commercial data processing, it is inappropriate and has many deficiencies
which are too serious to be ignored. The deficiencies may be summarized as
follows.

It is unable to cope with vague and incomplete user requirements [Brittan
1980, MacEwen 1982].

® It discourages feedback to the earlier stages because of the cost escalation
problems [Bastani 1985].

It cannot predict the effects of introducing a new system into an organization
before the system is complete [Keen 1981].

It cannot properly study and take into account the human factors involved in
using the system.

® Itintroduces a computer system into an organization suddenly. This is a rather
risky approach since users are known to resist significant, sudden social
changes [Rzevski 1984].

The customer may have to wait for a long time before actually having a
system available to him for use. This could have undesirable effects on
customer trust and may cause frustration [Gladden 1982].

The final product will, at best, reflect the user requirements at the start of the
project and not the end. In long projects, these two may differ considerably

INTRODUCTION 5

due to changes in the customer’s organization and practices.

i Once the users start employing the final system and learn more about it, their
views and intentions change significantly. Such changes in user perception
can by no means be predicted [Clark et al. 1984].

1.3 The prototyping solution

In the light of the difficulties described above, many researchers have arrived at the
conclusion that software development, particularly during its early stages, should
be regarded as a learning process and practised as such [Mason and Carey 1983],
and that it should actively involve both the developer and the customer
[Christensen and Kreplin 1984]. For it to be efficient, it requires close cooperation,
and can be successful only when it is based on an actual working system [Somogyi
1981]. Although customers are not very good at stating what they want from a
future software system, they are very proficient at criticizing a current system!

A number of techniques have emerged in recent years that are based on this
idea. They are classed under the generic term rapid prototyping [Smith 1982,
Zelkowitz 1984]. The use of these techniques represents a major change in the way
software is produced. They rely on an idea borrowed from other engineering
disciplines — that of producing a cheap and simplified prototype version of a system
rapidly and early in a project. This prototype becomes a learning device to be used
by both the customer and the developer and provides essential feedback during the
construction of a system specification. The prototyping approach, when compared
to current methods, is so dynamic that the difference can be compared to that
between interactive and batch oriented systems [Naumann and Jenkins 1982].

Like software testing [Meyer 1978], the main philosophical issue in
prototyping is admission of failure; that we, as human beings, no matter how
careful in our development practices, are likely to make mistakes. Bally et al.
[1977] put the idea appropriately in the following words.

‘In one sense the prototype strategy is an admission of failure, an
admission that there will be circumstances in which, however good our
techniques and tools for investigation, analysis and design, we shall not
develop the right system at the first attempt. But surely this is only
realism based on hard experience, theoretically ideal solutions are often
far from satisfactory in a very imperfect world.’

One of the objectives of the prototyping approach is to reduce the maintenance
effort. There is now considerable evidence [Swanson 1976, Zelkowitz et al. 1979,
Lientz and Swanson 1980, Lientz 1983] that software maintenance can occupy
between 50 to 90% of total project cost during the lifetime of a system. There is
increasing empirical evidence [Boehm er al. 1984] that prototyping can indeed
produce more maintainable products.

6 SOFTWARE PROTOTYPING, FORMAL METHODS AND VDM

Overall, the limited results and experience which have been obtained have
been very encouraging. For example, in a reported prototyping experiment [Boehm
et al. 1984], systems were developed at 40% less cost and 45% less effort than
conventional methods. Other researchers have reported even more impressive
figures. Scott [1978] has described a system which was estimated to cost $350,000
to develop but was accomplished by a prototype that cost less than $35,000. The
figures that have been reported have also supported the contention that prototyping
shortens the overall development cycle for software [Berrisford and Wetherbe
1979, Mason and Carey 1983, Bonet and Kung 1984].

1.4 Summary

This chapter has only been introductory in nature. It has pointed out that
there are a number of problems associated with conventional software
development. Typical problems include the inability to cope with user
requirements, and the late visibility of the software product. Software
prototyping was presented as one solution to some of these very large
problems and some empirical data was presented to support this.

