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PREFACE

The properties of plane sets of points which form the principal
subject-matter of this book are those that depend essentially
on the fact that a plane can be cut up into polygonal pieces,
and therefore belong to what is usually called the combinatorial
theory of sets of points. The 2-dimensional part of thé theory
seems particularly well suited to form a first introduction to
Topology, since it shews clearly the advantages of an algebraic
treatment of complexes (modulo 2 addition)-without involving
any but the simplest theorems of linear algebra.

1 hope the book may also be useful to analysts, by making
accessible the simple proof of Jordan’s Theorem, and other
separation theorems, that are based on the “ Alexander Lemma,”.

Since the book is meant to be an account of methods, rather:
than a comprehensive collection of results, special topics, such
as the theory of prime ends, have been omitted. It was also
not possible to give any account of the remarkable methods
by which 8. Eilenberg has recently proved many of the results.
of Chapters v—vir, in some cases extending them to sets which
are not open or closed (see Note 24).

The combinatorial theory cccupies Part II. In Part I the
necessary general theorems on closed and open sets, compact-
ness, connected sets, etc. are established for sets in any
metric space, since the proofs are no more difficult than for
plane sets. Readers who are acquainted with the simplest
properties of closed and open sets may find it convenient to
turn straight to Part I, using Part I as the need arises. (A list
of symbols used precedes the Index.) v

I am indebted for many suggestions throughout the book
to Dr J. H. C. Whitehead, who read both the manuscript and
the proofs, and to Dr N. E. Steenrod. of Princeton.University,
and Professor J. H. Roberts, 6f Duke University, who alse read
the work in manuscript. I wish also to thank the University
Printer and his staff for the great trouble they have taken to
ensure the best possible arrangement of each page.

M. H. A.N.
November
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GENERAL PROPERTIES OF
SETS OF POINTS






Chapter I
SET S *

§1. THE CALCULUS OF S8ETS

1. The object of the calculus described in § 1 is a practical one—
to shew how complicated properties of sets may be deduced by
formal rules from a small number of properties which are suffi-
-.ciently simple to be self-evident. The propositions accepted as
self-evident (lettered A to F) aré not intended as-a system of
axioms—a much smaller namber would suffice for that purpose—
but as a convenient body of “standard forms” for use in sym- -
bolical work.

2. Aset (or class or aggregate) is to be thought of not as a heap of
things specified by enumerating its members one after another,
but as something determined by a property, which can be used to -
test the claim of any object to be a member of the set. Thus the
set of even integers is determined by the property of being twice
some other integer, the algebraic numbers by the property of
satisfying & polynomial equation with integral coefﬁgéie-nts. Two
properties determine the same set if they are “formally equi-
valent”’, i.e. if no ob]ect has ong property without having the
other. : ‘
The symbol ze 4 means “r is a member (or element) of A’
The set which has only the single member @ is denoted by ().
Thus € (@) means simply z=a.
%

3. The symbol 4 < B (or B2 4) means that, for zvery =,
' zeA implies zeB.

It is usually read ““ 4 is contained in B”, or ““ A is a subset of B”",
but, as the form of the symbol suggests. identity is not excluded.

* The subjects dealt with in this preliminary chapter are (1) the caleulus ors
algebra of sets, and (2) the distinction between enumerable gets and others. Readers
who are familiar with these matters should omit this chapter, lmt should note thu
definitions hero adopted for ‘the symbols A € B and A C B, pp. 3. 4; 8-4, p. 7;
and €4, p. 7.

(3) 12



4 TOPOLOGY OF SETS OF POINTS .3

The symbol A4 < B (rarely used in this book) means “A < B but
A% B”, and is read ““ 4 is a proper subset of B”.W* . -

Al. AcA.
2. IfAcBand BcCthen AcC. =
3. A=Bif,and only if, A< Band Bc 4.

These properties of sets must be accepted as self-evident.
(A 3 may, if preferred, be regarded as a definition of equality
between sets.)

-

4. The sum, A + B, of the sets 4 and Bis the set; of all members
of either set. Thus “ze (4 + B)” means “ze 4 or ze B (or beth) ™’

QS

AB
Fig. 2

For example, if 4 is the set of real numbers between 0 and 2, and
B the set between 1 and 3, 4 + B is the set between 0 and 3!
The common part,t or intersection, 4 B, of the sets 4 and B is
" the set o/f things belonging to both A and B, i.e. “xe¢ 4 B” means
“zeA and xze B”’. A dot is sometimes inserted, thus: 4+ B. The
usual convention about bracketing is adopted, i.e. 4 B+ C means
(AB)+C. ; - ‘ '
The operations + and ° have all the formal properties of
~ordinary addition and multiplication.

B1l. A+(B+C)=(4+B)+0, (4AB)C=A(BC),
2. A+B=B+A, AB= BA,
3. A(B+0C)=AB+AC;

'* The numbers (1), (2), etc. refer to the notes at the back of the book.

Y There are so many different symbolic “ products™ in the theory of sets and
topology _that the word is best avoided in connection with the common part.



L5 _ SETS
and they have the further properties

B4, A+4=4, AA=A4,
5. A<c4A+B, ABcA,
61. If A<Cand BcCthend+ B<C,
6-2. If A>C and B2C then AB2C. )
All these formulae may be accepted as self-evident as they |
stand, or referred back to propositions of logic. For example,
if the “definitions” of A< B and of xe¢4 + B are inserted in

B6-1, it becomes “if ze A implies xe C, and z¢ B 1mphes zeC,
then (xe A or xe B) tmplies z¢ C”.

If 4 is a finite set, with members a,b, ..., k, then
| —.(a)+(b)_+...+(k),.
which will be abbreviated to (a, b, ..., k).

Examples. 1.‘ (A+B):(A+C)=A+BC. ‘e

For
(A4+B)(44+C)=A+AB+AC+ BO, byBl-4

Since ABS A, A+ AB = A by B 6-1, and hence
(A4 AB)+ AC=A+AC =4,

giving the result. (This is the “dual distributive law”’, obtained from
B 3 by interchanging + and °.) \

2. A necessary and sufficient condltxon that A< B is that
A+B=B. :

IfA+B= B, Ac Bby B5. IfACB A+BCBbv Aland B6-1,
and B4+ B by B5

Ewxercises. k. Prove B4 formally from” A'and the rest of B 1-6.

2. A necessary and sufficient condition that 4< Bis that AB=.4. :

8, The null-set, denoted by 0, has no ‘members and is ‘contained
_in every set: -’

C. 0<4: the null=set is a subset of every set.

When sets are regarded as collections or heaps of thmﬂs a set
with no members is a rather shadowy or even pmdoxxcal entity,
but its mysterious quality disappears if statements about sets are

I, T E2APDE anjj\ www. ertongbook.



6 - | TOPOLOGY OF SETS OF POINTS . 1.5

interpreted as statements about properties. Let p be called a
null-property if it is not possessed by any object. Examples are:
being greater than 3 and less than 2, or being a zero of 2. Such
properties are frequently considered in mathematics, particularly
‘in:‘proofs by reductio ad absurdum. Any two null-properties are
‘“formally equivalent”, in the sense of par. 2, and therefore all
these properties determine the same set, which is called, the
null-set.

To arrive from thls deﬁmtlon at proposition C it is necessary to,
consider more closely the interpretation of the symbol 4 < B. The
meaning assigned to it was: for every , x¢ 4 implies z¢ B. Thig
means that z¢ B urfless “xe¢A” is false, i.e. “x¢ B” is true, or
“ae A’ 18 false. This final form may be taken as the basic meaning
of A< B, and from it it is clear that 0< 4. For since, for all z,
“2€0” 1s false, the proposition

“xeA” is true or “z¢0” is false

is true, whatever the set A may be.
"From C and B 6-1 and 6-2 it follows that

A+0="4, A0=0.

Thus the formal properties of the null-set justify the symbol 0.

Two sets are said to meet (or intersect) if they have at least one

‘eommon member. It follows from the definition of the null-set

that the necessary and sufficient condition that'4 and B'meet is
- that AB#0. .

Note. In work that is not purely symbolical the symbol 4 < B
. is often replaced by the words “all a’s are b’s”—for example
: “the set of all parabolas is contained in the set of all conics”’ by

“all parabolas are conics”. It must, however, be borne in mind
that.if 4 is the null-set “all a’s are b’s"" is to be regarded as true
whatever B may be. Thus all zeros of ¢? are real and positive,
because e* has no zeros. All zeros of ¢ are also real and negative,
and there is no contradiction between ths statements, because
it is not asserted th:at any actual number is. both positive and
negative, but only that the set of zeros of e* (i.e. the null-set) is a
subset of both the other sets of numbers.

&



L6 SETS 7

6. Subtraction. The diﬁ’erence, B— A, between dn)f two.sets, B
and A, is the set of elements of B not contained in A;ie.
“xe(B—4)” means “ze B, butAnot (zed)”. .
Evidently A—4 =0, and 4 -0 = 4. ) S
The agreeable similarity so far observable between the algebra
of sets and ordinary algebra breaks down with the introduction
of subtraction, which is not even a.sqociative; for
A+(A-A)=A4+0=A4,
but (A+4)—-A=A-4=0.
This is due to the fact that B— A4 is not the
solution of the equation 4 + X = B, which
may heve an-infinity of solutions (e.g. if
B=4), or none (if B=0). It is possible
" nevertheless to maintain a workable cal- B
culusby operating with complements with respect to a fixed set S.
- If A c 8 the set §— 4 is called the complement, or residual set.
of A with respect to 8. If § is supposed fixed, S— A4 may be
dencted by €A. ; -

" Besides the obvious properties
D1. €8=0, 0=,
2. A+%¥A =8, A4 =0,
3. €(¢A) =4,
4, If AcBithen ¥B<¥A,

the camplement has the important property of interchanging
+ and °:

D5. €¥(4+B)=%A4-¢B, ¥(AB)=%€A+¥B.

(See Figs. 1 and 2, where 8 may be taken to be the whole plane.)’
This proposition correspoads to the theorem in logic that “not
(porg)” isequivalent to “not p and not g%, and *“not (p and q)”
to “not p or not ¢%. i Ry o

°

* Theorem 6-1. If A+ X = 8, and AX = 0, then X = €A, -
By the first of the given equations, X< .S. Multiplying the
first equation of D 2by X and using A X =0, we obtain X - ¥4 = X.

* Le. Theorem 1 of par. 6 (of Ch. 1), referréd to in this chapter as 6-1, in others -
as I. 6-1.

&



8 TOPOLOGY OF SETS OF POLINTS I.é

Multiplying the first of the given equations by %A and using
A-€4 =0,we get X A =%A. Hence X =% A.

7. Wenow return to the difference, B — A, between any two sets.
If 8 is any set containing A and B, the property “z belongs
to B but not to A”, defining B— A, is evidently equivalent
to “z belongs to B and 8, but not to' 47, i.e. to

(xeB) and (zeSbutnotzed). ‘
The first bracket is the determining property of B, the second

 that of ¥4. Hence

D6. If complements are taken with respect to any set comammg
both A and B, B—'4 = B-¥A.

By means of D 6 all differences occurring in any formula can be
expressed in terms of complements with respect to a fixed set, S,
containing all the sets involved, and the formulae D 1-5 applied.
This is the method recommended for proving formal identities.

Emmples (All complements are formed with respect to an arbitrary
set, S, containing 4, B and C, except in Example 4.)
1. A(B—C)= B(4—C) = AB-C, for all three sets are AB-€C.
2. B-A=B—-AB.
B—AB = B-%¥(AB)

=B¢¥A+B+¥B

= B+¥A4 =B-A4.
3. A necessary and sufficient condition that A B=0is that A = ¢ B.

If it is given that 4 < ¢ B, multiply both sides by B. If it is glven
that 4 B=0, multiply both sides of A= B+¥¢B by 4.

4. If C< B< A then (A — B)+ (B—C) = A — C. Take complements
with respect to 4. The left-hand sxde is ¥ B+ B¥C. Since ¥ B<¥€C,
this is

%B-?C’-{-B?’G =¢C=A-C.

5. The proposztwns D1 and D 3-5fcan be deduced formally from
A-C and D2.

The theorem 6-1 is first proved, as in the text. It uses only A-C
and D2,

Proof of D 1. Smce 8+0="8 and S0=0, it follows from 6-1 that
#8=:0and €0=
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Proof of D3. By D 2 the equations
€A+X =8, ¥A°-X=0
are satisfied by X = A. Therefore by 6-1, A =€ (€ 4).
Proof of D4. Since A< B, S = 4+¥A4< B+%¥A. Multiply both
sides by € B: €Bc¥€B-€A¥€A.

Proof of D5. Let A’'=%¥A4 and B'=%B. Then
(A4+B)-(A'B'y=AA'"+B' + BB'+A’' =0,
(A+B)+(A'B)2(AB'+A'B+ AB)+A'F’,
since all the sets in the bracket on the right are contained in 4 or B,

=(A4+4")-(B+B)=8
Since 4, B and A’ B’ are all contained in 8, it follows tha.t
1 (A+B)+A'B' = 8.

Hence by 6:1 4+ B and A’'B’ are complementary sets. This gives the
first part of D5 immediately, and the second part on interchanging
dashed andrundashed letters. '

Ezxercises. 1. A(B—C)=AB—AC.

2. (A—B)+(4—-0C)=A—-BC.

3. (A—B)(4—-C)=4—(B+C).

4. (A—C)+(B—C)=(4+B)-C.

5. (A—B)+(B—A)=(A+B)—AB.

6. A—(4A—B)= AB.

7. €A+ Ag+...+A)) =CA,*CAy ... G4,

8. A+(B—A)=A+B, A(B—4)=0. Prove that the whole of
D 1-6 can be deduced formally from these two relations together with
A-C and the definition “%4 = §—A if Ac8”. [First prove that
_the equations 4+ X = A+ B, AX=0 have at most one solutlon
Cf. 6-1 and Example 5 aboye ]

.8.. Duality. The calculus that has so far been developed (sometimes
called the Algebra of Sets, or Boolean Algebra) has a duality property
which has probably already been observed by the reader. If in any
theorem of the Algebra all differences are expressed in terms of com-
plements with respect to a fixed set S, and then the symbols

+and ° )
0and 8§
Sand 2 J

the result is also a true theorem of the Algebra.

are everywhere interchanged,
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Since no appeal is made to the duality property in this book a -
general proof (which would require a more exact delimitation of the."
““ Algebra of Sets”) is not given. (Cf. note 2.)

9. Ttis frequently necessary to consider sets whose members
are themselves sets of things. If M is such a set of sets, the mem-
bers of M (i.e. the setsof ““things ”’) are usually denoted by a suffix
notation, 4,. The suffix x may range through any set B, e.g. the
integers from 1 to k, all the positive integers, all the real numbers,
etc. When this notation is used for the membem of M the set M
itself is denoted by {4.}. o

The sum-set > A,
‘ zeB
is the set of all members of the sets 4_; i.e
g Hze E A s
zeB :
means “for some z of B, zezA . The product-set
M4,
xeB
is the set of elements that belong to all the 4,;
“ze IT A.”
xeB .

means “for every x Qf B, 2e4_”. The notations for sum-set and
product-set may be abbreviated to }_‘, A, and 1'[ 4,, or even TA

and ITA, when the meanmg is elear When the suﬁixes are
positive mtegers the sum is denoted by

EA“ or ZA,,,
1 1

and the product similarly; but it is to be emphasised that the
infinite sum and productare not derived from the finite ones by

any limifing process, but ha.ve an independent definition of
their own. .

Example. If A, is the set of roots of the equation2”=1, ¥ A,;, is the .
1

-]
set of numbers e?7ia, where o takes all rational values; and [[ 4,, is

the single number 1.



L9 SETS 11
The sum-set and product-set evidently coincide with the earlier
sum and common part when the number of sets is finite. 4,
and ITA, may therefore in all cases be called simply the sum and
common part of the sets 4,,.
The formal properties of = and I1 are:

El. IfaeB, I 4,4, I 4,
xeB zeB -

2:1. If, for every a of B, A,< O, then £4,<0.
2:2. If, for everyaof B, A,2C, then 14,3 C.
These propositions may be ““translated’” in the uépal way; e.g.
E 21 states that if a ¢ B implies 4, C, then “z¢4,andaeB”
implies z¢ C. . _ "
F1. If A,c B, for eachx, SA,<*B,and 14, 11B,.
2. Z(4,+B,)=Z4,+ZB,. A
3-1. I(A+B,)=A+IIB,.
3:2. £(AB,)=AZB,.
4. If 8 contains all the sets A, then £A, and II(S Az) are

complementary sets in S; i.e. if € denotes the complement in S,
C(ZA,) =T1(F4,).

As a final example of the use of the “calculus” it will now be
shewn that the propositions F are formally derivable from A-E.
From this and other examples that have been given in this
section it follows that all the “standard forms” A-F can be
derived formally from A, B (without B4), C, D2 and E.®

ProofofFl For every a, 4,= B,< X B, and HA,SA,,EB apply
E2.

‘Proof of F2. Since 4,=%4,and B,cXB,, 4 +B,<_=ZA,+ZB
Therefore by E2-1
. Z(4,+ 8B, )CEA +ZB

-The ather half follows from F 1.
Proofof F3-1. Let X =I1(4 + B,). Then, by F1,4 < X and I'IB,EX
and therefore , A4+TB,EX. _
If B, is one of the sets B,, X< 4 + B,, and therefore
: X—-Ac(A+B,)—-A<B,.
Henw X—-Ac HB,, and therefore X< A4 + B,

fi fl N, T4 RKPDFIGE I L www. ertongbook:



