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PART I

COMMUNICATION SYSTEMS



INFORMATION THEORY

INFORMATION CAPACITY OF GAUSSIAN CHANNELST

Charles R. Baker

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

Abstract. Information capacity of Gaussian channels is one of
the basic problems of information theory. Shannon's results for
white Gaussian channels and Fano's “waterfilling” analysis of
stationary Gaussian channels are two of the best-known works of
early information theory. Results are given here which extend
to a general framework, these results and others due to Gallager
and to Kadota, Zakai, and Ziv. The development applies to arbit-
rary Gaussian channels when the channel noise has sample paths
in a separable Banach space, and to a large class of Gaussian
channels when the noise has sample paths in a linear topological
vector space. Solutions for the capacity are given for both matched
and mismatched channels.

Introduction

The modern theory of information is largely based on the pioneering
work of C.E. Shannon [1]. The contributions and importance of information
theory to the advancement of technology are very well known, and need not be
summarized here. However new applications of a different nature seem likely
to arise in the not too far distant future. Some of these potential appli-
cations would require a much deeper development of the theory than has been
needed heretofore. This is in part because of rapid advances in technology
in areas such as computers and communications. Thus one may envision com-
puters of such high capability that their optimum use will require mathe-

+ Research supported by ONR Contract N0O0014-86-K-0039
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matical models using infinite-dimensional methods. Fiber optics is already
leading to communication channels of extremely high bandwidth. Also to be
considered is the need to develop information-theoretic models and methods
for applications which do not fit into the classical mold of a communica-
tions channel with stationary Gaussian noise or a discrete memoryless chan-
nel. On the one hand, some communication channels contain nonstationary
noise as a major source of interference. In another direction, information
theory is viewed as a means of evaluating and designing systems in areas
such as image processing, artificial intelligence, and surveillance.

Thus, the scope of information theory as presently applied may require
considerable expansion in order to meet the needs of the future. In parti-
cular, mathematical models may be needed for problems of a very general
nature, including channels with memory which may be infinite-dimensional,
nonstationary, and possibly non-Gaussian.

The present article gives a treatment of capacity for Gaussian channels
in a very general setting: when the stochastic processes of interest induce
measures on a linear topological vector space. The work is an extension of
previous results for induced measures on a separable Hilbert space [2], [3].
Although the latter model will be sufficiently general for most applications,
it is not likely to be adequate for a treatment of nonstandard applications
such as random fields, artificial intelligence, and surveillance.

In the case of stochastic processes with sample functions belonging
to a separable Hilbert space, the results given in [2] and [3] represent a
substantial generalization of previous work. This previous work includes
Shannon's original white noise channel [1], Gallager's further work on this
model [4], Kadota, Zakai, and Ziv's work on the Wiener channel [5], and
the results of Fano [6] and Gallager [4] for stationary Gaussian channels.
All of this prior work makes various assumptions on the channel noise.

Of course, in practical applications the coding capacity is most im-
portant. Partial results in this area for these more general models have been
obtained [7], [8]. It can be expected that more complete solutions of the
coding capacity problem will require the availability of general results on
information capacity such as those summarized here, since proofs of coding
capacity typically involve use of the information capacity.

This paper discusses the general framework in which these problems
have been solved, and summarizes solutions. Proofs will not be included;
it will be seen that one can modify the proofs of the Hilbert space solutions
given in [2] and [3]. This has already been done in [7] for the case of the
“matched” channel analyzed in [2], and similar methods can be used for the
“mismatched” channel considered in [3]. Thus, the development here will be
limited to defining the framework of the problem, providing the supplemen-
tary details needed to adapt the Hilbert-space solutions and proofs of [2]
and [3] to the present more general setup, and then stating the results.
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Mutual Information and Channel Capacity

Let (X, £) and (Y, ¥) be two measurable spaces, with 2y y a probability
on (XxY, fx¥). For the sake of clarity, yyxy is called a joint measure.
Denote by yyx and uy the projections of #yy on (X, #) and (Y, ¥), ux ® uy
the product measure on (XxY, #x¥). The (average) mutual information of
Hxy is defined to be

I(uxy) =  sup ZN/‘X}'(CN) log M_ M
NiCy,...Cy ol Hx® py (Cy)

where the supremum is over all N>1 and all measurable partitions Cy,...,Cy
of uxy. It follows immediately that /(#yy) = o when it is false that zyy
is absolutely continuous with respect to uy ® uy (Uyy < Ux®uy). When
Hyy < tx ® uy, then [9]

d
Iuxy) = f [logd—uﬁ;(x, y)] dixy (X, Y) - )

XxY

Channel information capacity is defined as the supremum of I(uyy)
over all #yy in a suitable set. In the framework of most communication
channels, to be used here, the channel model is defined as follows. A mea-
sure Uyy on (XXY, fx¥F) describes the statistical relationship between the
message X and the channel noise N; usually, as we shall assume, (yy =
My ® iy . The channel output Y is described by measure py =ty ® sy * g1,
where g is (XXY, fxF)/(Y, F)-measurable. The joint measure iy is
then uy ® uy  f l, where f(x, y) = (x, g(x, y)). The most typical situa-
tion in engineering applications is for g(x, n) = A(x) + n, where A is an
X, /Y, p)-measurable coding function. In general, the capacity is then
defined as supy I(uyy), where Q is a set of constraints on all admis-
sible pairs (uy, A) of message measures y and coding functions A. How-
ever, if A is 1:1 and bimeasurable, then no information is lost due to
A. That is, let gy = [ty A ® sy] « h=1, where h(x, y) = (x, X + y).

If Ais 1:0 and (X, §)*X/ (v, H*S bimeasurable, then (1) shows that
I(ugy) = I(Uxy). If X and Y are Polish (complete, separable, metrizable),
then by Kuratowski's Borel mapping theorem [10] any 1:1 Borel-measurable
map A: X - Y is Borel-bimeasurable.

We shall assume here that X = Y, f = F, A = I (identity), so that
g(x, y) = x + y. The extension to the more general case can be obtained by
either restricting attention to coding functions A which are 1:1 and bi-
measurable, or else by computing the information lost due to a coding
function which does not have these properties.
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Mathematical Structure

The following assumptions will be made henceforth. £ is a locally
convex Hausdorff linear topological vector space over the real numbers, with
topological dual E’. It will also be assumed that E is quasi-complete: every
closed and bounded subset is complete. £ must then be sequentially com-
plete. o(E") will denote the cylindrical o-field, generated by the elements of

E’, o(E"" the completion under the measure 4. For x in E and y in E’, the
value of y at the point x will be denoted by <y, x>.

The noise measure 4, will be defined on (E, o(E")). iy will be as-
sumed to be Gaussian and zero-mean: s - £-1 is a zero-mean Gaussian dis-
tribution on R for each £ in E’. uy will be assumed to have a covariance
operator Ry: E’ - E. Ry, is linear, self-adjoint and nonnegative: <x, Ryy> =
<y, Ryx> and <x, Ryx> 2 O for all x, y in E’. uy has the characteristic
function given by

%) = fe“"'” diy(y) = (1D RyE)
E

and <x, Ryy> = [ <x, <y, u> duy (u).

Under these assumptions, it is known [11] that there exists a unique
Hilbert space Hy contained in E, such that the natural (canonical) injection
Jn: Hy = E is continuous, Ry = jy _]N, and Hy is the closure of range (R)
under the inner product <Ru, Rv>y = <u, Rv>. Here, Hy, is always identi-
fied with Hy. Hy is termed the reproducing kernel Hilbert space (RKHS)
of Ry (or uy); it is actually the RKHS for the covariance function Ry:
E'XE’ 5 R, Ry(u, v) = <u, Rv>. It will be further assumed that Hy is
separable; instances where this assumption is not necessary will be noted.
If 5 is Radon, then Hy is necessarily separable [12].

The message measure (Zy is a probability on (E, o(E")). The constraints
to be imposed will ensure that xy has a covariance operator Ry: E’ - E;
it can be assumed (WLOG) that u#y has zero mean. As in the previous

section, the measure of interest is sy y, defined by fyy = fix @ Uy - f h
where f(x, y) = (x, x+Yy).

A basic result in the Shannon theory is that if the supports of £, and
My are restricted to be of finite dimension and the covariance of iy is
fixed, then I(uyy) is maximized when uy is Gaussian. From this one ob-
tains the result that the channel capacity problem can be solved by assuming
MUy to be Gaussian (see [2, Lemma 6]). This assumption will be made hence-
forth.

The observation measure Uy = iy ® py - g~1, where g(x, y) = x + y,
is thus Gaussian, with covariance operator Ry: E' = E, Ry= Ry + Ry. Of
course, Ry has a RKHS Hj contained in E and Ry = jy j;'f, where jy:
Hy - E is the natural injection and is continuous.
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The joint Gaussian measure lyy has a joint covariance operator
Ryy: E' X E' 5 E x E [13], [7]. This operator and its properties are cha-
racterized by the following result. It does not require that Hy be separa-
ble. Moreover, the result holds for any joint Gaussian measure on (EXE,
o(E")xo(E") having a covariance operator Ryy: E' X E' 5 E X E.

LEMMA 1 [13], [7].

(1) Ryy = JF+V)§*, where §: Hy X Hy - E X E is the natural in-
jection, ¥ is the identity in E X E, and ¥ is a self-adjoint bounded
linear operator in Hy X Hy with IVl < 1.

2) V(xy) = (Vxyy, V; y %), where Vy y: Hy - Hy is a bounded linear
operator with IVyy Il < 1. The operator Vyy is uniquely defined by
[g<u, <y, y> duyy(x, ) = <u, jyVyyjyv> for all u, v in E".

(3) I(uyy) < e if and only if Vyy is Hilbert-Schmidt with IVyy Il < 1.

(4) When Vyy is Hilbert-Schmidt with IVyy Il < 1, then I(uyy) =
—%‘Zn log (1-7,), where (%,) are the eigenvalues of VyyVyy.

Lemma 1 is fundamental to the solution of the channel capacity pro-
blem. It enables one to calculate the mutual information, yielding the follow-
ing result.

LEMMA 2 [2], [7]. Suppose that zy is Gaussian. Then:
(1) I(uyy) < oo if and only if zzy [range (jy)] = 1, where zy is the ex-
tension of iy to o(E)*X;
(2) I(uxy) < oo if and only if Ry —jNTjN, where T: Hy - Hy is trace-

class. When this is satisfied, I(uxy) = 2 Zz, log (1+7,), where
(z,,) are the eigenvalues of T.

If the RKHS Hjy is not separable, then part (1) of Lemma 2 holds w1th
the condition zy [range (jy)] = 1 replaced by ;zx [range (jy)] = 1, where /‘x
is the outer measure obtained from gy [7]. The following result is then
useful.

LEMMA 3 [7]. Suppose that E is a locally convex Ltv.s., # a probability
measure on (E, o(E’)). Suppose that B is a separable or reflexive Banach
space and that j: B - E is a continuous linear injection. Then, the fol-
lowing are equivalent:

(D) p*id1 =1,

(2) u =v-j-1, where v is a unique probability measure on (B, o(B")).
If (1) or (2) holds, then g is Gaussian if and only if v is Gaussian. If B
is both separable and reflexive, then j[B] € o(E’)” so that (1) is equiva-
lent to 1 [j(B)] =
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In the mismatched channel to be considered subsequently, the con-
straints are given in terms of the norm for another Hilbert subspace of E.
The following result is then useful. It does not require that Hy be separable.

PROPOSITION 1. Suppose Hy, is a Hilbert subspace of E. Let jy: Hy 2 E
be the natural injection map, and suppose that s [range (jy )] = 1. Then
I(tx y) < = if and only if Hy, is a vector subspace of Hy. If Hy, < Hy,
then jy, is continuous, the natural injection J: Hy, - Hy is continuous, and
Hy, is the RKHS for the covariance operator jy, j{;; if Hy is separable, then
Hy, is also separable.

Proof. Suppose that Hy, < H,. Since Hy, is a Hilbert space contamed m
the RKHS Hy, Hy, is also a RKHS of functions on E’ and IIJxII kllxll
for all x in Hy,, some k < o= [12], so that the natural injection J: HW S Hy is
continuous. Since ji = jyJ, jy must also be continuous, so that jy, j; is a
covanance operator mapping E’ - E. By definition, Hy, is the (unique) RKHS
for jy jw - To see that Hy, is separable (assuming that Hy, is separable), one
notes that the linear map L: Hy - Hy,, L_],;',‘u = _}W* u, is continuous and has
dense range in Hy,, so that L* has only {0} in its null space. Thus, if
{u,, n=1} is such that {jyu,, n=1} is dense in Hy, then {Ljyu,, n>1}
must be dense in Hy, . I(iyy) < e, by Lemma 2, since iy [range (jy)] =

If Hy is not contained in Hy, then there exists z in range (jy ),
z ¢ range (jy). The Gaussian measure i, with covariance z ® z has
Uy [range (jy)] = 0; by Lemma 2, I(iyy) = . [

Constraints

5 !
The constraints that will be used to define th Ms,s}}%e;‘%et ‘Q of
message measures Ly are the following: LYW

i lrange Giy)l = 1, @D

[ ety dre
Hy
where Hy, is a Hilbert space contained in Hy, with norm Il- lly,, jy: Hy 2 E
is the natural injection, and vy is the Borel measure on Hy satisfying
1
Hx =Vx°Jw-
Since we wish to have the constraint (A.2) apply a.e. duy, it is first
necessary to require (A.1). The existence of the measure vy such that zy
= Vx- j{vl follows from Lemma 3; Hy, is separable, from Proposition 1.

Also by Proposition 1, the capacity will be infinite if Hy, is not a vector
subspace of Hy,.

IA
~

(A2)
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The constraint (A.2) is motivated by the typical application when E
is L,[0, T). In the case of formal white noise, the constraint is usually

E ,fg X%(w) dt < P. This can be viewed as a constraint on E IX Ilfv , where W is
the RKHS of the identity operator; this is the covariance of formal white
noise. When white noise is viewed as the formal derivative of the Wiener
process, then the “integrated” channel is analyzed [5]. In that case, the
transmitted signal X is defined by X, = ﬂ) u(s) ds, u in Lp[0, T] and the
constraint is typically ENUI7 < PT. %I} is the norm of x in the RKHS

of Wiener measure. Finally, one may note that in his treatment of station-
ary power-and-frequency-limited Gaussian channels when the noise has
integrable spectral density £4], Gallager first assumes a constraint on the
message of the form EIXI} 7y < PT. However, the transmitted signal is
obtained by passing the message through a linear filter whose transfer function
G satisfies

T IGE

< oo,
_f on A

where ¢y is the noise spectral density. Such a transmitted signal satisfies

both (A.1) and a constraint of the type (A.2), with (assuming that IGI2/¢,,

is bounded) an upper bound of

2 PT IG ()12
By, £ 5 sgp—qb—(NTl)qy

for any T > 0, where now X refers to the filtered message and Il- lly  is
the RKHS of the noise covariance for the interval [0, T]. Of course, the
constraint (A.2) is not placed explicitly on the transmitted signal in [4];
instead it appears in the solution for the capacity. Gallager's analysis is
for the water-filling model treated by Fano [6]. Fano's treatment does not
yield finite capacity, precisely because the constraints (A.1) and (A.2) are
not imposed.

In addition to its use in previous more specialized analyses, the use
of a Hilbert space norm is plausible in light of two other considerations.
First, as can be seen from Lemma 2, the capacity will be infinite unless the
constraint used implies Ey IX Il,zv < P’ for some P’ < eo. Proposition 1 shows
that Hy, must be a RKHS of functions on E’ if the capacity is to be finite.
Second, a RKHS norm actually places a dual constraint on the signal; this
corresponds to limitations on the amount and frequency distribution of the
signal energy in typical applications.

The capacity subject to the constraints (A.1) and (A.2) will be denoted
by &y (P). If Hy = Hy (consisting of the same elements and the identical
inner product), then the capacity will be denoted by &y (P) and the channel
is said to be matched (to the constraint). If Hy, # H, as Hilbert spaces,



