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Preface

Regression analysis is an often used tool in the statistician’s toolbox. The
theory is elegant and the computational problems intriguing, so that both
“pure” and “applied” statisticians can feel at home in the subject. For
example, among the theoreticians there is still an ongoing interest in least
squares with all its generalizations and special cases. At the same time
practitioners continue to develop a wide range of graphic methods for
testing models and examining underlying assumptions. As numerical anal-
ysis and statistics have slowly intertwined, statisticians have been made to
realize the difficulties associated with certain time-honored computational
procedures. The development of regression computer programs that are
efficient and accurate is now recognized as an important part of statistical
research.

However, this continuing research interest in regression across the
pure-applied spectrum creates problems for the textbook writer. As dem-
onstrated by current books on the subject, the material can be presented at
a variety of levels of mathematical difficulty ranging from the very general
treatments of Seber [1966], Searle [1971], and Rao [1973]. for example, to
the more discursive approaches of Williams [1959] and Sprent [1969].
Clearly such a variety of books is needed because there is a wide diversity
of readers. However, while teaching the subject continuously over the past
10 years I have become more and more aware of the need for a suitable
university text that takes a middle road between giving no proofs of results
and giving proofs in complete generality. Because regression analysis and
much of analysis of variance are concerned with full rank models, it would
appear that the less than full rank case tends to be overemphasized for the
sake of greater generality. In particular, the generalized inverse has been
rather overworked to the detriment of the simple geometric ideas that
underlie least squares. Clearly the generalized inverse has its uses, but its
role needs to be kept in perspective.

Regression analysis is an applied subject describing methods for han-
dling data; ideally, any theoretical course should be backed up by practical
work. This raises the question of whether a single textbook should try to
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Vi Preface

deal, in detail, with both the theoretical and computational aspects of the
subject. Clearly such a task is not easy and in this age of statistical package
programs it would seem more appropriate to treat the two aspects quite
separately. For example, procedures that have an elegant theory may be
computationally unsatisfactory. whereas messy. complicated algorithms
may be efficient and accurate. Because packages vary from place to place
according to the local computer facilities. the ultimate solution might be to
have a theoretical textbook that includes the computational aspects of
regression in broad outline only and a practical “manual™ giving numerical
examples and details of packages: a forerunner of the latter type of book is
Daniel and Wood [1971].

With the above thoughts in mind I have endeavored to write a theoreti-
cal book that is satisfying for the mathematically minded reader but that
does not lose the reader in generalities. I have also endeavored to give an
up-to-date account of computational methods and algorithms currently in
use without getting entrenched in minor computing details. Since the
research literature on regression continues to grow rapidly. I have surveyed
the better-known statistical journals with the aim of producing a book that
I hope will be useful as a general reference. The basic prerequisites for
reading this book are a good knowledge of matrix algebra and some
acquaintance with straight-line regression and simple analysis of variance
models.

The first four chapters provide a fairly standard formal treatment of
least squares fitting and hypothesis testing for the muluple linear regres-
sion model. In Chapter | expectation and covariance operators for vectors
of random variables are introduced gently, and in Chapter 2 the multi-
variate normal distribution and certain theorems on quadratic forms are
considered. Chapter 3 deals with least squares estimation and includes
generalized least squares, the less than full rank case. and estimation with
restrictions. Chapter 4 considers. in detail. the F-test for a linear hypothe-
sis, and in Chapter 5 there is a discussion of confidence intervals and
simultaneous inference as applied to regression models: prediction and
inverse prediction (discrimination) intervals are also considered. Chapter 6
examines the assumptions underlying the least squares theory and various
methods of testing these assumptions are provided. Because straight-line
and polynomial fitting are important techniques, Chapters 7 and 8 are
devoted to these two topics. respectively. Chapter 9 exploits the close
relationship that exists between regression and analysis of variance models
and provides simple procedures for carrying out an analysis of variance:
attention is confined mainly to balanced (orthogonal) designs. In Chapter
10 the analysis of covariance is also considered from a regression view-
point and, because of close ties with analysis of covariance, the topic of
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missing observations 1s considered in detail. Chapters 11 and 12 deal with
the computational aspects of regression analysis: Chapter 11 is devoted to
algorithms for least squares fitting and Chapter 12 considers the problem
of choosing the best regression subset from a set of likely regressor
(independent) variables.

Appendixes A and B contain a number of matrix results whose proofs
are not always readily accessible. and Appendix C describes probability
plotting. Appendixes D. E. and F give some statistical tables which are
useful in simultaneous inference. Finally, there is a set of outline solutions
for the exercises.

It has not been easy to find or make up theoretical problems that are
relevant and yet not too difficult. It is hoped that the 200 or so problems
scattered throughout the book will not only help the student but also
provide some ideas for teachers.

This book is based on several courses that | have been giving at
Auckland University, New Zealand, during the past 10 years and I wish to
thank the many students who have stimulated my teaching interest in the
subject. Special thanks are also due to Heather Lucas for reading a first
draft and to Peggy Haworth for typing most of the manuscript.
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CHAPTER 1

Vectors of Random Variables

1.1 NOTATION

Matrices and vectors are denoted by boldface letters A and a, respectively,
and scalars by italics. Random variables are represented by capital letters,
and their values by lowercase letters (for example, Y and y, respectively).
This use of capitals for random variables, which seems to be widely
accepted, is particularly useful in regression when distinguishing between
fixed and random regressor (independent) variables. However, it does
cause problems because a vector of random variables, Y, say, then looks
like a matrix. Occasionally in Chapter 11, because of a shortage of letters,
a boldface lowercase letter represents a vector of random variables.

If X and Y are random variables then the symbols E[Y], var[Y],
cov[X, Y], and E[X|Y=y] (or, more briefly, E[X]|Y]) represent expecta-
tion, variance, covariance, and conditional expectation, respectively.

The n X n matrix with diagonal elements d,,d,,..., d, and zeros elsewhere
is denoted by diag(d,.d,,....d,), and when all the &;’s are unity we have the
identity matrix I,.

If ais an nX1 column vector with elements a,,a,,...,q,, we write
a=[(q;)], and the length or norm of a is denoted by ||a||. Thus

— 1/2
lal|=Vaa =(af+al+-- +a;) 2

The vector with elements all equal to unity is represented by 1.

If the m X n matrix A has elements a; we write A=[(q,)], and the sum of
the diagonal elements, called the trace of A, is denoted by trA (=a,,+a,,
+ -+ +a,,, where k is the smaller of m and n). The transpose of A is
represented by A’=[(a})], where a;=a;. If A is square its determinant is
written |A|, and if A is nonsingular its inverse is denoted by A~'. The space

1



