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FOREWORD

This IMA Volt;me in Mathematics and its Applications

. |
i

COIV'IPUTATION‘AL FLUID DYNAMICS AND REACTING GAS FLOWS

is'in part the pre proceedmgs of a workshop which was an integral part of the 1986-87 IMA
program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee: -
Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for
_planning and implementing an exciting and stimulating year-long program. We especially
thank the Workshop Organizers, Bjorn Engquist, Mitchell Luskin and Andrew Majda, to
organizing a workshop which brought together many of the leading researc‘xers in the area
of r‘omputa‘ukmal fluid dynamics.

George R. Sell

Hans Weinberger



PREFACE

Computational fluid dynamics has always been of central importance in scientific computing.
It is also a field which clearly displays the essential theme of interaction between mathematics,
physics, and computer science. Therefore, it was natural for the first workshop of the 1986-
87 program on scientific computing at the Institute for Mathematics and Its Applications to
concentrate on computational fluid dynamics. In the workshop, more traditional fields were mixed
with fields of emerging importance such as reacting gas flows and non-Newtonian flows. The
workshop was marked by a high level of interaction and discussion among researchers representing
varied “schools of thought” and countries.

This volume contains 15 papers that were presented at the workshop on computational fluid
dynamics and reacting gas flows during September, 1986. Numerical problems connected with

" weather prediction are presented in a paper by H.-O. Kreiss and G. Browning. Recent progress in
vortex methods for mcompress;ble flows is described in papers by J. T. Beale and P.-A. Raviart, G.
Cottet, and S. Mas-Gallic, and new finite element techniques for compressible and incompressible
fluid flow are given and analyzed by C. Johnson. O. Pironneau and F. Hecht have contributed a
paper on the necessity and limitations of turbulence modeling for the numerical solution of the
Navier-Stokes eﬁuations, and new computational research in aerodynamical fluid dynamics is given
in the papers by E. Krause and A. Rizzi and E. Murman.

The field of reacting gas flows is represented by papers by A. Kapila and P.L. Jackson, J.H.S.
Lee, J. Nunziato and M. Baer, E. Oran, A. Majda and V. Roytburd, and J. Sethian; and the field
of non-Newtonian flows is represented by D. Joseph and D. Malkus and M. Webster. G. Baker
has contributed a paper on the instabilities 6f free surface flows.

Let us point out that research in computational fluid dynamics was also presented at other
workshops during the program of the year on scientific computing at the IMA, in particular during
the mini-symposium on numerical simulation in oil recovery. Proceedings of these workshops
appear in the same series. REe

The conference committee would like to thank the directors of the IMA Professors H Wein-
berger, G. Sell,-and W. Miller, and the staff of the IMA, Mr. R. Copehmd, Mrs. P. Kurth, Mrs. C.
McAree, and Mrs. M. Saunders for their assistance in arranging the workshop. Special thanks are
due to Mrs. K. Smith and Mrs. P. Brick for their preparation of the manuscripts. We gratefully
acknowledge the support of the National Science Foundation and the Cray Research Foundation.

Conference Committee: B. Engquist, M. Luskin, and A. Majda.
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TWO-FREQUENCY RAYLEIGH-TAYLOR AND
RICHTMYER-MESHKOV INSTABILITIES

G. R. Baker

Exxon Research and Engineering Company
Route 22 East

Annandale, NJ 08801

1. Abstract

When a flat interface between an incompressible, inviscid fluid and vacuum is driven by a pressure
gradient in the direction opposite to that of the density gradient, it is linearly unstable to any sinusoi;i‘ld per-
turbation. The nonlinear evolution of a single frequency has been studied in the past using %onndly
integral methods. In practice, the interface is usually randomly perturbed, but this case ﬁryl/enu great
difficulty to numerical studies because the interface soon becomes severely distorted. However, it‘is possible
to study the evolution of two modes long enough to gain some understanding of their interaction in the
nonlinear regime. The behavior is different depending on whether the pressere gradient is externally

imposed (Réyleigh-’l‘aylor instability) or internally present (Richtmyer-Meshkov instability).

2. Introduction

-

Attempts to design fusion reactors by using laser implosion of deuierium-tritium targets have generate
recent interest in the Rayleigh-Taylor instability. As the shell of the target is heated and imploded, several
complicated physical processes take place, one of which is the Rayleigh-Taylor instability of one of the shell
surfaces which causes turbulent mixing and degradation of target performance{1]. Consequently, studies of
the Rayleigh-taylor instability have been undertaken in simpler circumstances [2] in order to gain a basic
understanding that may be extrapolated to the conditions applicable to laser fusion research. Tﬁe simplest
manifestation of the Rayleigh-Taylor instability is when the pressure in a light gas accelerates a liquid inter-

face. If a benurba:ion to the flat interface has a fixed wavelength and large encugh initial amplitude, then a
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tegulz'n- pattern of spikes and bubbles form in time [3]. New expe'l_'iments [4] show that eyen when the ini-
tial perturbation.s are small, but random, clear structures still emerge in time, although they are not neces-
sarily in a regular pattern.

The simplest mathematical model to aescribg this phenqmena comprises. of Euler’s equations for the
incompressible flow of the liquid and the requircmgntg that the pressure is continous across the surface and !
the nOl‘I{lal velocity of the liquid is the normal velocity of the surface. The motion pf the light gas is
ignored and surface tension is neglected. Linearyanalysis of the perturbations to a flat interface, dictate that
all sinusoidal modes grow and that the growth rate is proportional to the square root of the wavenumber.
Thus the motion is linearly ill-posed. However, |t is possible that the nonlinear motion is well-posed and it

is towards clarifying this issue that several numerical calculations have been performed.

The most successful numerical studies have used boundary integral méthoqls [5-7]. The results all
show that for a range of initial amplitudes, the perturbation to a flat interface containing a 's’ingle Fourier
mode grows into a pattern of freély falling spikes and steadily rising bubbles. The spikes appear to be stable,
whereas different numerical methods exhibit stable bubbles for one method and unstable bubbles for oth-
ers. Unfortunately, analytic studies [8,9] have not fully clarified the nature of the stability of the bubble.
The stretching of the interface as the bubble rises has a stabilizing effect, but whether it stabilizes all modes
is difficult to tell. The nonlinear stability of the' numerical methods is also unknown in general, although it
has been pointed out [10] that nonlinear resonances between modes, that are introduced artificially by a
numerical method, will cause instabilites. It is only by careful numerical studies that these issues may be

clarified.

While there is debate about the stability of the bubble when the liquid is penetrated by a very light
gas, there is no doubt that the interface betw'ee.n two immiscible fluids of comparable densities does become
singular in finite time. The interface may be represented by a vortex sheet whose strength is modified by
the baroclinic generation of vorticity. Along the sides of the spikes, fairly uniform distributions in strength
of the vortex sheet are developed which subsequently undergo Kelvin-Helmholtz instability. Systematic

attempts [5] to refine the interface fail; the motion of the interfacial points become chaotic.

It is now widely believed that the motion is ill-posed; the interface develops a curvature singularity in -

finite time. This belief is founded on several studies [11,12,13] on the behavior of vortex sheets.
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Nevertheless, the hope exists that this singularity does not prevent some meaningful interpretation to the

motion of the vortex sheet beyond the time of formation of the singularity. In particular, the possibility of
an infinitely long spiral, initially small but growing rapidly in time, has been proposed [14]. In the next sec-

tion of this paper, I summarize some numerical evidence that this may not be so, that in fact the vortex

sheet loses its meaning in the classical sense. -

Such a conclusion is a pessimistic one for vortex sheet representations of interfacial flow. The reason :
is embedded in mathematical studies of the weak limit to hyperbolic systems of partial differential equa-
tions. In short, near the singularity time, imerfaci;.l motion will be stronély ,susceptible ‘to the slightest
amounts of viscosity or surface tension. Unfortunately, the behavior will be very different depending o'n‘
whether viscosity or surface tension dominates. Consequently, the nature of the eﬁor in a numerical
method, either dissipative or dispersive, may seriously affect the numerical resujllls. There have been
several attempts [15,16] to simply modify the numerical methods so that calculations will continue beyond
the singularity time, but no attention hz;s been given to the type of numerical error that is introduced. So
the results may be method dependent. Even attempts to explicitly include surface tension [7] have failed to
produce reliable results, possibly because the interface was not adequately resolved to capture important
small-scale effects. Presently, it is the lack of understandil;g of the mathematical properties of interfacial

flows that prevent the development of reliable numerical methods. ’

In the final section of this paper, attention is again focussed on the nature of tt classical Rayleigh-
Taylor intstability, that is, where the motion of the gas may ve neglected compared to that of the liquid. To
gain a better understanding of the nonlinear stability of the pattern of spiies and bubbles, another higher
mode is introduced in to the initial perturbation. If the initial amplitude of the higher mode is small
enough, there is almost no change to the pattern of bubbles and spikes. When this approach is applied to
the Richtmyer-Meshkov instability, the curvature of the spike tip is sharpened in the presence.of a higher

mode, and this effect may lead to the development of a curvature singularity in finite time.

3. Vortex Layers and Vortex Sheets
When the densities of the fluids on either side of the interface are comparable, the regions of the
interface adjacent to the spike are Kelvin-Helmholtz unstab'le. Unfortunately, a vortex sheet develops a

curvature singularity in finite time as it deforms as a consequence of the Kelvin-Helmholtz instability
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[11,12]. Unless there is some meaningful interpretation to the motion of the vortex sheet beyond the
singularity time, there is no possibility of cpnu'nuing the calculation of the interfacial n‘m!ion for the
Rayleigh-Taylor instability without the inc.lu_:io_nb of viscosity or surface tension. Some FIM.IS.!6] have
speculated that a spiral forms a or just beyond the singularity time. However, there have been no studies

that show this is mathematically feasible.

Instead, the o‘bservations (5] of the motion of a thin layer of fluid of intermediate density have led to
a study in which the vortex sheet i§ replaced by a thin layer of vorticity. In two-dimensional flow, the
motion of a thin layer of uniform vonicity may be calculated by the method of contour dynamics [17]
Clearly, a thin layer of vénicity is a ‘more realistic model for the shear layer. Mathematicaily, the limit of
an infinitely thin layer is a'-vor.tex sheet [18], and so by studying the motion of several layers of various

thickness, it is possible to extrtapolate the bzehavior of a vortex sheet.

The method of contour &ynamics has ﬂready been applied to a periodic thin layer [19], but the results
reported are phencmenological in nature. New resylts, to be reported in detail eisewhere, have concentrated
on the analytical properties of the motion of the thin layer and its fimit of vanishing thickness. Here, only

& summary is given of the appropriate reults.

g In order to conduct ihis study, the foliowing set of equations for the motion of the bounding curves
were solved numerically;
3 }“ y/(9)-3(0) Bz

5de’, j=1,2,
o 2(G)=27(c") o0 el

2] ‘g

3O T
where the complex field point z=x+iy has been introduced for convenience and the lower and upper
bounding curves for the layer are z;{<) and z,(o) respectively. The curves are parametrised by their initial
location through the variable 6. The horizontal velocity reaches a constant U, -U far above, below the
layer respectively and the mean thickness of the layer is H. Finally, z* is the complex conjugate of z.

These equations are different from the standard ones for the method of contour dynamics, but are easier to
treat numerically [20].

The initial conditions must be chosen carefully if a comparison is to be made with the moticn of 2
vartex sheet. In particular,the simplest manifestation of the curvature singularity occurs when the vortex

sheet is initially flat, z=0, but its strength varies as 1 - a cos(¢), The limit of a layer, specified initially by



2,=0 ~ i%(l- acos(6)) and 2,=C + ii;—(l— a cos(©)), as H — 0 will be such 2 vortex sheet. Calcula-

tions with- these initial conditions aﬁd various H all show the same basic behavior. At first, vorticity is
advected towards those regions where roli-up should take place and the layer thickens there as a conse-
quence of incompressiblity. At times beyond the singularity time of the vortex sheet, the bulge in the
layer reorganises itself into a structure that appears elliptical with thin attached arms. Such structures have
been seer before [19,21] and may be canonical for patches of vorticity in two-dimensional flow. In Figure
1, a typical result is shown. Since the flow is Zn-periodic, the bounding curves that lie-only in a 2x -periodic
window are drawn for a layer of mean thickness 0.1 at a time of 4.0. Here a=0.5, so the time of singularity

. for the vortex sheet would be 7= 1.45.

/2
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Figure 1. The location of the vortex layer of mean
thickness H = 0.1 at time t = 4.0. The
initial amplitude a = 0.5.

At first sight, it appeurs that a curvature singularity might iorm where the arms attach to the vortex
core. If this is 30, it would bear directly on the nature of the singularity of the vortex sheet, but careful cal-

culations show that this is nos the case. In fact, the bounding curves appear to have a Fourier representation

of the form, .
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L

6
'(q-t) e z a,(t) ‘hcx
where for large n

la,(£) | = C n=B®) g-atnn

In Figure 2, B(¢) is shown as a function of time for various H. Once the vortex core is established, B is

almost constant. In Figure 3, a is shown as a function of time for various H, and in each case o decays to

zero asymptotically. For a > 0, The Fourier series converges and so we may speculate that the motion of a

finite layer is well-defined for all time, a result that is stronger than present theory [22].
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Figure 2. B as a function of time for various mean
thicknesses H.

The area of the vortex core varies as H? with p= 1.6 for small H. The aspect ratio of the core appears
to be independent of H and so its thickness, T, scales IS'H ? with ¢= 0.8. Since the vortex sheet strength is
approximately 2UT/H, it becomes infinite as H vanishes. If this Esult is true. (clearly one can never be
absolutely sure that the thickness is small enough in these numerical studies to have obtainefl the correct
asym ptotic bekavior), there can only be two possibilities. There is a non-classical interpretation \to ‘the vor-

tex sheet that allows a motion in which its strength is infinite at a point for a period of time or the motion



of the vortex sheet is not defined beyond the singularity time.

0.3 - T T T
H=.2
0.2+ H=.1 \ A
] -
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0.1 5]
0 1 T g \\\\\\\\‘T‘

2 3 4 5 6

Figure 3. o as a function of time for var{ous thicknesses H.

In conclusion, fundamental questions remain about interfacial flow of two immiscible fluids of com-
parable densities. Viscosity and surface tension can be expected to play important, but different roles when

L]
the curvature at some part of the interface approaches a singularity in time.

4. Two-Frequency Studies

The difficulties that are experienced numerically in the calculation of the evolution of a Rayleigh-
Taylor unstable interface between immiscible fluids disappear when the density of the lower fluid is negligi-
ble, for then there is no Kelvin-Helmholtz instability present. Numerical results show convergence as the
resolution of the interface and its motion is improved [1,5]. While one may speculate that the motion is
well-posed, it is best to check the variartion in behavior for a variety of initial conditions. In particular, the
flow will be assumed to be 2x -periodic, the wavelength of a Fourier mode setting the spatial :cﬂe In addi-
tion, a higher mode will be superimpbsed initially to test the sensitivity of the motion to initial conditions.
Of course, one would prefer to select random initial -conditions, but.the complexity of the subsequént .

$
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