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Preface

The deep study of nature is the most fruitful source of knowledge.
Joseph Fourier

Fourier’s Theorie analytique de la chaleur is the bible of the mathematical physicist.
Arnold Sommerfeld

My purpose in writing this book is to explain the basic mathematical theory
as well as some of the principal applications of Fourier analysis. Vibrations
and sound, heat conduction, optics, and CAT scanning are just some of the
many areas to which Fourier analysis contributes deep insights. Although
there are many fine books that cover any one of these applications in detail,
each such book must necessarily be rather brief in its coverage of
mathematical techniques. Therefore, I feel that there is a real need for a
text that covers most of the basic mathematics of Fourier analysis and gives
concise discussions of how that mathematics is applied.

This book arose from the lecture notes that I have given to my students in
courses and seminars at the University of Wisconsin at Eau Claire. These
classes consisted mostly of seniors majoring in mathematics and physics. My
intention has been to provide them with a firm foundation for the modern
ideas and applications of Fourier analysis and not just stick to the simplest
concepts. Hence the book should also be suitable for first-year graduate
students. A previous course in advanced calculus would make the book
most easily comprehensible; all the necessary background can be found in
any of the following books: Bartle (1964), Buck (1978), Kaplan (1984), or
Rudin (1964). I have found, however, that talented physics majors have
been able to read the text with a fair degree of comprehension.

To make this book accessible to as wide an audience as possible I have
not utilized the Lebesgue theory of integration. Those readers who are
familiar with this sophisticated theory, however, should have no trouble
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making minor, obvious modifications in theorems and proofs to obtain more
general results. Also, for reasons of space, I have not included a complete
discussion of computer methods. I hope that the section on Fast Fourier
Transforms in Chapter 7 will serve as a brief introduction to this aspect of
Fourier analysis. Perhaps in a second edition I might expand this discussion.
In any case, I have provided ample references to the literature of
computerized Fourier analysis in §13 of Chapter 7.

When I first planned to write this book I wanted to include more material
on the history of Fourier analysis, since it has united much of mathematical
analysis and physics for nearly two hundred years. But such material would
have made the book even longer than it already is. Readers who are
interested in the rich history of Fourier analysis might begin by consulting
the References for Chapter 1.

The exercises in the text range from straightforward applications of
formulas to collections of problems aiming toward extensions of results in
the text or describing additional concepts. It is very important that the
reader try as many exercises as possible; the text cannot be comprehended
without them. Those exercises that are absolutely essential for understanding
the text are marked by a star (*). Some exercises that might be found
difficult are marked by an asterisk (*).

This book was written for a one-year course, in which case there should
be time to cover the entire book. If the book is used for one semester, then
one possible syllabus, which I have found effective, consists of Chapters 1,
2, 881-4, 3,2, §86-8, 6, 7, and (optionally), 8, §§1-4. In classes with a high
proportion of physics majors I have found it expedient to cover Chapter 3
after §§1-4 of Chapter 2, and then return to §86-8 of Chapter 2. There is
some flexibility for presentation of material, as indicated by the following
diagram of the dependency of chapters.

Chapter 1 — =y Chapter 6
Chapter 2

{ Chapter 4_] u:hcpter ﬂ
&hupter m LChupter 5 —’—_ Ch’;:oprttez\7

Dependency of Chapters.

Chapter 7
Parts Band C
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Notation

The notation in the text is fairly standard—for example, a, b, ¢, d are
usually real constants, j, k, m, n are usually integers, and ¢, u, v, x, y, z are
usually real variables. We will sometimes write o, Uo, Vo, Xo, Yo, Zp tO
denote fixed values of those variables. The letters f, & h are reserved for
functions; f', g’, h’ will denote derivatives of those functions when they
depend on a single variable. The open interval a <x < b will be denoted by
(a, b) while the closed interval a = x < b will be denoted by [a, b].
The following is a list of some special notations that are employed.

A

f = Fourier transform of the function f
fer /3> (f.) = partial derivatives 8f/x, 3f/3dy, (3f/ 9z) of a function f that
depends on x, y, (z)
f(xo+) = one-sided limit from the right lim f(xo+u)= lim f(xo+ u)
(=0) A
f(xo—) = one-sided limit from the left lim fo+u)= lim f(xo+ u)
(i=0) o
f~ = Laplace transform of a function f
f” =Radon transform of a function f (This notation for Radon
transforms will be used only in Chapter 9; it will occasionally
be used in earlier chapters to denote auxiliary functions with
no fixed meaning.)
, 1 if x| <3
IT = function IT(x) {O i x| >1
1— x| if x| =1
0 if [x|>1
sinc = function sinc x = sin 7x/mx
YW = harmonic function
R = set of real numbers
R?, (R* R") = set of ordered pairs (triples, n-tuples) of real numbers

A = function A(x) = {
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We will now briefly discuss, through exercises, some concepts and tech-
niques that will ease the burden of some of our later work.

1. Integrate the following integrals by parts.

1
€)) J x sin 27x dx
0

(b) f e* sin 3x dx

2. Even and Odd Functions. The definition of an even function f over an
interval (—a, a) symmetric about the origin is that
f(=x)=f(x) for each x in (—a, a)
An odd function f over (—a, a) is a function that satisfies
f(=x)=—-f(x) for each x in (—a, a)

Given these definitions, do the following exercises.
(a) State which of the following functions are odd, even, or neither, on
the given interval.

f(x)=x* on(-1,1) g(x)=x>cosdx on (—mx, )
h(x) =x*cos4x on (-, 7) k(x)=x+3x* on (-2,2)

(b) Show that for all (continuous) even functions

[ rean=2f rwax

and for all (continuous) odd functions

J: f(x)dx=0.
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(c) Fill in the following table by writing odd, even, or neither, in the
appropriate blanks.

i g fe| flg| f+g | f—8
odd odd

even even

even odd

odd even

3. Using the results of Exercise 2, evaluate the following integrals.

(a) f 3x cosx dx

in
(b) f (x*>+x +3)cosx dx
—in

[Note: For (b), split the integral into even and odd terms.]

4. Kronecker’s Rule. With the aid of Kronecker’s rule, many of the
integrals needed in Fourier series are easier to evaluate. The following
exercises are intended to explain Kronecker’s rule.

(a) Let p(x) be a polynomial in x of degree m, and f(x) a continuous
function. Let F(x)=[f(x)dx, B(x)=[F(x)dx, ..., E,(x)=
[ E,(x) dx. And, let p“)(x) be the jth derivative of p(x). Prove that

[ P @) d =p@F @) - PV E) + PO
e (D) Ey () + €
=3 (VPO Em(x) +C

[Hint: Integrate repeatedly by parts until p™*V(x) =0.] It follows
immediately from this result that

b m b
[ e ar=| 3 19p0w0E )]
a j= a
For example,
f 2 sinxdx = ZJ x’sinxdx  (x’sinx is even)
- 0

=2[x*(—cos x) — (3x*)(—sin x)
+ (6x)(cos x) — (6)(sin x)]|7
=27 - 12n
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(b) Using Kronecker’s rule, evaluate the following integrals.

7T 1
f x? cos nx dx (x* + 2x? + 1)sin nox dx
oz -1

[Note: For the second integral, do not forget about even and odd
functions. ]

. Complex Numbers. A complex number z is a quantity a +ib where a
and b are real numbers and i = —1. The arithmetic of complex numbers
is the usual one subject to the relations

(@a+ib)t(c+id)y=(atc)+i(btd)
(a +ib)(c + id) = (ac — bd) + i(bc + ad)

It is often convenient to think of z as the point (a, b) in the Cartesian

plane. Therefore, the distance from z to 0=(0,0) is (a®+b*)". We

define |z| = |a + ib| to equal that distance (a”+b%)"? and call |z| the

modulus of z. We call a the real part and b the imaginary part of z and

write a =Re z and b =Imz. Finally, we define Z to be the complex

number a —ib and call it the complex conjugate of z. Using these

definitions do the following exercises.

(a) Compute 3 —2i — (4 + 3i) (3 + 2i)(6 — 5i) 3+i—(4+10)i

(b) Prove that zw =z w and that |zw| = |z] - |w| for all complex numbers
z and w. Conclude that |z"| = |z|” for all positive integers n. [Hint:
|z| = (z2)".]

(c) Prove that the following inequalities hold for all complex numbers z
and w

lztwl=|z|+|w| [Rez|=]|z| [Imz|=]z]

(d) Suppose that a +ib #0 + i0. We then define division as follows

c+id_(c+id)(a—ib)_<ac+bd> (ad—bc)
a+ib 267 \@+b2) \a¥p?
Using that definition, compute

3-2i nd 2—4i
a
4+ 2—i

(e) Prove that for all complex numbers z and w we have

z+tw=w+z ZW = Wz
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