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PREFACE

This text is intended primarily for use by students and teachers of
the statistics section of A-level Pure Mathematics with Statistics, an
increasingly popular course.

Points of theory are presented concisely and illustrated by suitable
worked examples, many taken from previous A-level papers. These
are then supported by very carefully graded exercises which serve to
consolidate the theory, link it with previous work and build up the
confidence of the reader. There are frequent summaries of main
points and miscellaneous exercises containing mainly A-level
questions.

Throughout the text we have aimed to provide the reader with a
mathematical structure and a logical framework within which to
work. We have given special attention to topics which, in our
experience, cause great difficulty. These include probability theory,
the theory of continuous random variables and significance testing.

The text covers the main theory required by all the major examining
boards. We are very grateful to the following for permission to
reproduce questions:

University of Cambridge Local Examinations Syndicate (C)

The Southern Universities’ Joint Board (SUJB)

Joint Matriculation Board (JMB)

University of London (L)

Oxford and Cambridge School Examinations Board (O & C)

incorporating School Mathematics Project (SMP)
Mathematics in Education and Industry (MEI)
The Associated Examining Board (AEB)
Oxford Delegacy of Local Examinations (O)

A-level questions are followed by the name of the board. Questions
from Additional Mathematics papers are indicated by the word
Additional, and (P) indicates a part-question.

We are particularly indebted to The Associated Examining Board
and The Southern Universities’ Joint Board for allowing us to use
some of their questions as worked examples, and would stress that
they are in no way involved in, or responsible for, this working.

We extend our thanks to our families, colleagues and students for
all their encouragement and support, in particular to Audrey
Shepherd and Jane Ziesler.

J Crawshaw
J Chambers



PREFACE TO THE
SECOND EDITION

In order to give a fully comprehensive coverage of the present
A-level syllabuses the following material has been added:

Chapter 4 — The use of binomial and Poisson cumulative
probability tables. The geometric distribution

Chapter 5 — The negative exponential distribution

Chapter 6 — The use of the standard normal cumulative tables
®(2) (with the use of tables giving Q(2) retained in
the Appendix)

Chapter 7 — Random sampling and the use of random number
tables

Chapter 9 — Significance testing relating to the binomial and
Poisson distributions

Chapter 11 — A fuller treatment of correlation and linear regres-
sion, including significance testing relating to
Spearman’s and Kendall’s coefficients of correlation.

Numerous recent A-level questions taken from all the major
examining boards have been added, together with worked examples
from the University of London Schools Examination Board which
we would stress is in no way responsible for these solutions.

J Crawshaw
J Chambers
1990
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DESCRIPTIVE STATISTICS

DISCRETE DATA

These are the marks obtained by 30 pupils in a test:

6 35 9 01 8 5 6 7 4 4 3 10
2 2 7 10 9 7 5 4 6 6 2 1 0 8 8

This is an example of discrete raw data.

Discrete data can assume only exact values, for example
the number of cars passing a checkpoint in a certain time,
the shoe sizes of children in a class,
the number of tomatoes on each of the plants in a greenhouse.
The data is ‘raw’ because it has not been ordered in any way.

To illustrate the data more concisely, a frequency distribution can

be formed. We count the number of 0%, 1’s, 27, . . . , and form a
table:
Mark 0 L5 2i0B8ued b 61570189 10

Frequency |3 3 3 2 3 83 4 3 3 2 1 |Total30

Discrete data can be grouped into ‘classes’, but once this has been
done some of the original information is lost:

Mark 0-1 2-3 4-5 6-7 8 and over
Frequency 6 5 6 7 6 Total 30

CONTINUOUS DATA

These are the heights of 20 children in a school. The heights have
been measured correct to the nearest cm.

133 136 120 138 133
131 127 141 127 143
130 131 125 144 128
134 135 137 133 129

This is an example of continuous raw data.

7



2 A CONCISE COURSE IN A-LEVEL STATISTICS

Continuous data cannot assume exact values, but can be given only
within a certain range or measured to a certain degree of accuracy,
for example

144 cm (correct to the nearest cm) could have arisen from any
value in the range 143.5 cm < h <144.5 cm.
Other examples of continuous data are
the speeds of vehicles passing a particular point,
the masses of cooking apples from a tree,
the time taken by each of a class of children to perform a task.

FREQUENCY DISTRIBUTIONS

To form a frequency distribution for the heights of the 20 children
we group the information into ‘classes’ or ‘intervals’:

(Alternative ways of writing
the interval)

1195 <h <1245 119.5-124.5 120-124
124.5<h <1295 124.5-129.5 125-129
129.5<h<134.5 129.5-134.5 130-134
134.5<h<139.5 134.5-139.5 135-139
139.5<h<144.5 139.5-144.5 140-144

The values 119.5, 124.5, 129.5, . . ., are called the class boundaries.

NOTE: the upper class boundary (u.c.b.) of one interval is the lower
class boundary (l.c.b.) of the next interval.

Therefore the width of the first interval = 124.5—119.5

=5
In fact, in this example, each of the classes has been chosen so that
the width is 5.

To group the heights into the following classes it helps to use a
‘tally’ column, entering the numbers in the first row, then the
second row, and so on.

133 136 120 138 Height (cm) Tally

131 127 141 127
130 131 125 144 1195<h <1245 | |

134 135 137 133 124.5<h <1295

1295 <h <1345 | |
43 128 129
133 143 1345<h <1395 | |

139.5<h<144.5
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The final frequency distribution should read:

Example 1.1

Height (cm)

1195<h <1245
1245<h <1295
12956 <h <1345
1345<h<139.5

139.5<h <1445

Tally Frequency

| 1
mr 5
JHT 11 7
1] 4
i 3
Total 20

distribution by taking classes of width 0.02 cm.

The following table gives the diameters of 40 ball-bearings, each
measured in cm correct to 2 decimal places (d.p.). Form a frequency

3.98
3.94
3.99
3.99
3.99

3.94
3.97
3.99
3.99
4.02

3.96
3.96
4.00
3.98
4.03

3.97
3.97
3.95
4.01
4.00

4.02
4.00
4.03
3.98
3.93

3.96
4.00
3.95
4.00
4.01

3.97
3.98
4.00
4.04
4.00

3.98
3.97
4.01
4.03
3.93

Solution 1.1

The smallest value in the table is 3.93 and the largest value is 4.04.
As measurements have been taken in cm correct to 2 d.p., the lowest
class boundary is 3.925 cm. As the class width is 0.02 cm, the first

interval must have an upper class boundary of 3.945 cm.

So we take as class boundaries 3.925, 3.945, 3.965, ..., 4.045.

The frequency distribution is as follows:

Diameter (cm) Tally Frequency
3.925 <d <3.945 ] 4
3.945<d <3965 | IHT 5
3.965<<d <3985 | JHT LHT 10
3.985<d <4.005 | JHT IHT |I 12
4.005<d <4.025 T 5
4.025 <d <4.045 ] 4

Total 40

NOTE: The intervals are often written

Diameter (cm)

3.93-3.94
3.95-3.96
3.97-3.98
and so on

Remember to work out the class boundaries.
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The following frequency distributions show some of the ways in
which data may be grouped.

(i) Frequency distribution to show the lengths of 30 rods. Lengths
have been measured to the nearest mm.

Length (mm) 27-31 32-36 37-46 47-51
Frequency 4 11 12 3

The interval ‘27-31’ means 26.5 mm < length < 31.5 mm.

The class boundaries are 26.5, 31.5, 36.5, 46.5, 51.5
The class widths are 5, 5, 10, 5

(ii) Frequency distribution to show the marks in a test of 100
students

Mark 30-39 40-49 50-59 60-69 70-79 80-89
Frequency 10 14 26 20 18 12

The class boundaries are 29.5, 39.5, 49.5, 59.5, 69.5, 79.5, 89.5
The class widths are 10, 10, 10, 10, 10, 10,

(iii) Frequency distribution to show the lengths of 50 telephone
calls

Length of call (min) 0- 3- 6- 9- 12- 18-
Frequency 9 12 15 10 4 O

The interval ‘3-’ means 3 minutes < time <6 minutes, so any time
including 3 minutes and up to (but not including) 6 minutes comes
into this interval.

The class boundaries are 0,3,6,9,12,18

The class widths are 3,3,3,3, 6

(iv) Frequency distribution to show the masses of 40 packages
brought to a particular counter at a post office

Mass (g) -100 -250 -500 -800
Frequency 8 10 16 6

The interval ‘-250° means 100g < mass < 250 g; so any mass over
100 grams up to and including 250 grams comes into this interval.

The class boundaries are 0, 100, 250, 500, 800
The class widths are 100, 150, 250, 300
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(v) Frequency distribution to show the speeds of 50 cars passing a
checkpoint

Speed (km/h) 20-30 30-40 40-60 60-80 80-100
Frequency 2 7 20 16 5

The class ‘30-40’ means 30 km/h < speed < 40 km /h.

The class boundaries are 20, 30, 40, 60, 80, 100
The class widths are 10, 10, 20, 20, 20

(vi) Frequency distribution to show ages (in completed years) of
applicants for a teaching post

Age (years) | 21-24 25-28  29-32  33-40  41-52

Frequency 4 2 2 1 1

As the ages are in completed years (not to the nearest year) then
‘21-24’ means 21 < age < 25. Someone who is 24 years and 11
months would come into this category. Sometimes this interval is
written ‘21-’ and the next is ‘25-’, etc.

The class boundaries are 21, 25, 29, 33, 41, 53
The class widths are 4, 4, 4, 8, 12

HISTOGRAMS

Grouped data can be displayed in a histogram.

fIn a Imtogram rectangles are drawn so that the area of each
: ,;proportmnal to the frequency m the range covered

We have =~ area « frequency

(a) Histograms with equal class widths

Example 1.2

Solution 1.2

The lengths of 30 Swiss cheese plant leaves were measured and the
information grouped as shown. Measurements were taken correct to
the nearest cm. Draw a histogram to illustrate the data.

Length of leaf (cm) | 10-14 15-19 20-24 25-29
Frequency 3 8 12 7

The class boundaries are 9.5, 14.5,19.5, 24.5, 29.5
The class widths are b, b, 5, 33

Now, area of rectangle = class width X height of rectangle
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As the class width is 5 for each interval,
area of rectangle = 5 X height of rectangle
So area « height of rectangle

Now, if we make the height of each rectangle the same as the
frequency,

we have area « frequency, as required.

Histogram to show the lengths of 30 leaves

Frequency

245 29.5
Length of leaf (cm)

(b) Histograms with unequal class widths

Example 1.3

Solution 13

The frequency distribution gives the masses of 35 objects, measured
to the nearest kg. Draw a histogram to illustrate the data.

Mass (kg) 6-8 9-11 12-17 18-20 21-29
Frequency 4 6 10 3 12

The class boundaries are 5.5,8.5,11.5,17.5, 20.5, 29.5
The class widths are 3, 3, 6, 3, 9

As the class widths are not equal we cannot make the height of each
rectangle equal to the frequency.

So we choose a convenient width as a ‘standard’ and adjust the
heights of the rectangles accordingly, as follows.

If we choose a class width of 3 as standard, then the first two
rectangles can be 4 and 6 units high respectively. However, as the
third interval is twice the standard width we must make the height
of the rectangle equal to half the frequency.

Similarly, as the last interval is 3 X standard we must make the height
of the rectangle equal to one-third of the frequency.
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As the heights of the rectangles have been adjusted, we are con-
sidering frequency per standard width. We will write this as ‘standard

frequency’.
Height of
Mass (kg) Class width Frequency | rectangle (stan-
dard frequency)
6-8 3 standard 4 4
9-11 3 standard 6 6
12-17 | 6 | 2xstandard 10 ix10=5
18-20 3 standard 3 3
21-29 | 9 | 3Xstandard 12 iX12=4

We have now ensured that the area of each rectangle is proportional
to the frequency, and the histogram is drawn as shown.

Histogram to show the masses of 35 objects

Standard frequency

14.5

17.5 20.5

23.5

265 295

Mass (kg)

Example 14 The following table gives the distribution of the interest paid to 460
investors in a particular year.

Interest (£)

25-  30-

40-

60-

80- 110-

Frequency

17 55

142

153

93 0

Draw a histogram to illustrate this information.




