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PREFACE

For many years there has been a noticeable lack of senior undergraduate
texts in igneous petrology that might bridge a gap between, on the one hand,
several excellent introductory petrography-orientated texts and, on the other
hand, more advanced texts heavily predicated on a thermodynamic and/or
chemical approach to the subject. Furthermore, in the last decade and a half,
say since the appearance of the prescient synthesis of Arthur Holmes’
Principles of Physical Geology, second edition, in 1965, we have witnessed a
profound re-orientation of igneous petrology in relation to global tectonics.
A giant step has been taken in clothing R.A. Daly’s historic comment,

“A final philosophy of earth history must be largely founded upon the unshakable
facts known about ignecus rocks’”

with evidence and conclusions from both young and old igneous rocks.
Ophiolites, Proterozoic igneous rocks, and a few other conspicuous growth
areas apart, we now seem to be entering a relatively quiet period of amassing
and interpreting a considerable amount of increasingly sophisticated
analytical data about igneous rocks, coupled however with a slackening in
the rate of new major advances in synthesis and understanding. Thus at this
particular time it seems appropriate to attempt to integrate the structure of
recent conceptual advances with the firm foundation provided by classical
petrology.

The approach in this book is hence predicated initially on field and other
direct observations and on an historical background. This approach leads
naturally from observational facts about extrusive and intrusive rocks and a
classical mineralogical classification, via differentiation processes married to
experimental work, to the evolution—of ideas on igneous rock series and the
recent explosion of the relationship of these to plate tectonics and inferred
mantle processes, and to an indication of some current problematical areas.
Students do seem to benefit from an appreciation of the historical path of
discovery and evolution of ideas about igneous rocks in order to make
intelligible the present body of knowledge and thrust of contemporary
research.

I have assumed that a reader of this book will have hadigome elementary
training in the physical sciences and some first courses in geology including
introductory pet ology, and ideally has access to a good thin-section
collection of igneous rock suites and the opportunity to read up or attend
parallel courses in relevant aspects of geochemistry and isotope geology.
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This approach is well illustrated by the choice of references — a perennial
and important problem in texts. Many classic and benchmark papers are
included, together with a large number of up-to-date review articles and 4
books, and a selection of more specific papers that the writer personally
has found interesting and informative, particularly those which may express
contrary or modifying opinions to contemporary conventional wisdom. In so
far as this book may fail to achieve a compromise between the desirable
attributes of readability, brevity, and information source, the reader may be
provoked into reading some of these references. As Gilbert Highet in his The
Art of Teaching so appositely recommends, there is no comparison between
the benefit to be derived from looking up work in the original and that from
tamely accepting someone else’s commentary,

My advice therefore to readers of this book is to use it as I will — with
marginal notes and additions, queries, expressions of dissent, etc., as not
only is any book imperfect but also our subject is continually evolving. Any
suggestions and rectifications will be gratefully received and acknowledged.

I should like to take this opportunity to record a great debt to teachers
and comrades over the years. Foremost among these is my former teacher
and supervisor, Professor L.R. Wager. Fashions may change in igneous
petrology as in other things, but a man’s stature does not. Lawrence Wager,
mountaineer and field geologist, perceptive petrographer and innovative
thinker, possessed the true scientific knack of being able to apply himself
assiduously to important problems capable of a solution at the time. A major
part of his legacy to igneous petrology is a now dispersed group of igneous
petrologists that received their training under him at Oxford and in the
Hebrides and Greenland, and elsewhere. I also recall with great pleasure the
camaraderie of geologists over the years in Zambia, Zimbabwe, Union of
Souih Africa, Ghana, Egypt, Morocco, Spain, France, Federal Republic of
Germany, Switzerland, Scandinavia, Eire, United Kingdom, U.S.A., Canada,
Iceland, India, Nepal, Malaysia, Australia, New Zealand and Japan, and
especially the stimulus afforded by undergraduate and graduate students
and colieagues at Memorial University of Newfoundland over the last four-
teen years.

Among colleagues at MUN I should especially like to thank in the context
of this work Glenys Woodland for the major part of the typing with able
assistance from Lillian Murphy, Cynthia Neary and Betty Andrews; Clifford
Wood, Gary McManus and colleagues for drafting services and advice; and
Jeanne Mills, Adele Poynter and George Einarson for help with references.
I owe a particular debt to my friend and colleague, Dr. John G. Malpas, for
his pains in cheerfully reading the text and making numerc us suggestions for
improvement despite other heavy claims on his time.

CHARLES J. HUGHES
St. John’s, Newfoundland
January 1981
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Units used in this book and their conversions to S units:

Concentration pph (parts per billion)
ppm (parts per million)
vol. % (per cent by volume)
wt. % (per cent by weight)
Energy cal. (calorie) 4.184 J
Length A (&ngstrém) 10" m
fathom (nautical fathom) 1.8288 m
Mass t {metric ton, tonne) 10" ¢
Pressure . atm. (atmosphere) 1.013-10° Pa
bar 10 Pa
Temperature °C (degree Celsius) K
Time day 86,400 s
a (vear) 3.16-107 s
Viscosity P {poise) 10" Nm?s!
S.1. unit prefixes:
# (micro) . 10- k (kilo) 10?
m {milli) 10-® M (mega) 10°¢
¢ {centi) 10-2 G (giga) 10°

Abbreviations, acronyms, and symbols used in text:

AFM variation diagram
An

C.L

CMAS system
DI

DLVL

E

alkalis: iron oxide: magnesia

{joule)

(meter}

{gram)

(pascal)

(kelvin)

{second)

proportion by weight of anorthite, the higher-temperature
component, in the solid-sclution series anorthite—albite:
for example, An,, signifies a composition of 81 wt.% anor-

thite
basaltic achondrite best initial
crystal field stabilization energy
crystallization index
colour index
Ca0—MgO—Al,0,—Si0,
differentiation index
depleted low-velocity layer

.explosion index
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En proporticn by weight of enstatite in the solid-sclution series
enstatite—ferrosilite (see note above on An)

FAMOUS French American Mid-Ocean Undersea Study

F1 fractionation index

Abbreviations, acronyms, and symbols used in text (continued):

FMA variation diagram
Fo

see AFM variation diégram
proportion by weight of forsterite in the solid-solution series
forsterite—fayalite (see note above on An)

h vertical distance in kilometres to Benioff seismic zone

HREE heavy rare-earth elements

(AT island-arc tholeiite

K, -value wt.% K,0 in a series at a silica content of 55 wt. %

LIL large-ion lithospheric

LKT iow-potassium tholeiite

LREE light rare-earth elements

LVL low-velocity layer

M-value 10G0Mg/(Mg + total Fe)

Mg ratio 100Mg/(Mg + Fe'*)

MORB mid-ocean ridge basalt

CIT oceanic-island tholeiite

PHMP primordial hot mantle plume

Q dimensionless quantity expressing seismic measure of anelast;-
city within the mantle

REE rare-earth elements

SBZ supra-Benioff seismic zone

S solidification index

(*’Sr/¥S8r)° initial *’Sr/**Sr ratio

See also general index for references to further explanation axd usage in
context of the above,

Frequently used abbreviations of normative mineral molecules for CIFW
classification:

ab = albite fo = forsterite ne = nepheline

ac = acmite fs = ferrosilite ns = sodium metasilicate

an = anorthite hm = hematite ol = ¢livinz

€ = corundum hy = hypersthene or = orthoclase

di = diopside ii = ilmenite Q = quartz

en = enstatite le = leucite wo = wollastonite

fa = fayalite mt = magnetite

Chemical sombols and giemern ta:

Ac actimum B horon Cd  cadmium
Ag  sijver Bi  barium Ce  cerium
Al aluminun Be  bervllium Ci chlorine
Ar o argon Ei  bismuth Co cobait
As arsenic By bromine it chromium
At astatine C carbon Cs  caesium
Au goid Ca  calcium Cu copper
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Chemical symbols and elements (continued):

Dy
Er
Eu
F
Fe
Fr
Ga
Gd
Ge
H
He
Hf
Hg
Ho
I
In
Ir
K
Kr
La
Li
Lu
Mg
Mn

dysprosium
erbium
europium
fluorine
iron
francium
gallium
gadolinium
germanium
hydrogen
helium
hafnium
mercury
holmium
icdine
indium
iridium
potassium
krypton
lanthanum
lithium
lutetium
magnesium
manganese

Mo
N
Na
Nb
Nd
Ne
Ni
0
Os
P
Pa
Fbh
Pd
Pm
Po
Py
Pt
Ra
Rb
Re
Rh
Rn
Ru
5

molybdenum
nitrogen
sodium
niobium
neodymium
negn

nickel
oxygen
osmium
phosphorus
protactinium
lead
palladium
promethium
polonium
praseodymium
platinum |
radium
rubidium
rhenium
rhodium
radon
ruthenium
sulphur

Sb
Sc
Se
Si
Sm
Sn
Sr
Ta
Tb
Te
Te
Th
Ti
Tl
Tm

\7
Xe
Yb

Zn
Zr

1x

antimony
scandium
selenium
silicon
samarium
tin
strontium
tantalum
terbium
technetium
tellurium
thorium
titanium
thallium
thulium
uranium
vanadium
tungsten
xenon
yttrium
ytterbium
zine
zirconium
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Chapter 1

MINERALOGY OF IGNEOUS ROCKS

1.1. INTRODUCTION

Igneous rocks, apart from those few which are wholly or partly glassy,
are composed of minerals and a knowledge of these minerals therefore is
one logical starting point for study. Indeed the microscopic determination
in thin sections of the content, abundance, and textural relations of com-
ponent minerals remains, as it was for classical petrographers, the most
widely used tool in the investigation of igneous rocks.

A mineral is a naturally-formed chemical compound having a definite
chemical composition and crystalline structure reflecting an ordered arrange-
ment of constituent atoms. The words ‘‘definite chemical composition’
need qualification: a certain amount of crystalline solution (alternatively
referred to as solid solution or diadochy) is possibly whereby atoms, essen-
tially of similar sizes, may substitute to a varying extent for each other
within certain crystal lattices. This may at first sight appear to the student
to be an unwelcome complication. The possibilities, however, for diadochy
between major elements are few in number, and the resultant mineral com-
positions vary in a systematic manner that can reveal a great deal about
magma compositions, temperatures of crystallization, fractional crystalli-
zation processes and the like (see Chapter 6), and thus prove to be a most
useful tool in our understanding of the genesis of igneous rocks, The charac-
teristic crystalline structures of the different minerals (with some degree of
variation resulting from this crystalline solution) are reflected in differing
optical properties which readily facilitate identification in thin section.

The actual number of distinct mineral species found in any one igneous
rock is small, commonly no more than about half a dozen. This in part
reflects the small number of chemical elements that are at all abundant in
igneous rock compositions, the possibility of substitution between some
of these elements within crystal lattices, and the possibility of further sub-
stitution such that most remaining elements present in small concentrations
in a magma accommodate themselves in the crystal lattices of the common
minerals as dispersed elements rather than form distinct mineral species.
This observed small number of minerals in any igneous rock also reflects
more fundamentally the operation of the phase rule and some close approach
to equilibrium conditions of crystallization, thus explaining the systematic
way in which magmas of similar compositions have crystallized to give
similar proportions of the same small set of minerals.
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In addition to this restraint, the range of magma compositions has well-
defined limits, and the total number of mineral species found in ali but
rare and compositionally exceptional igneous rocks such as carbonatite is
thus also very limited. The olivines, pyroxenes, amphiboles, micas, feldspars,
feldspathoids and quartz, plus a few oxide species in fact make up ~99%
of the overall content of igneous rocks. The feldspars alone comprise ~50%,
and pyroxenes and quartz a further 25%, of igneous rocks in general (although
not necessarily, of course, of each individual igneous rock).

1.2. CHEMICAL CONSIDERATIONS
1.2.1. The chemical elements

Just as igneous rocks are composed of minerals, so minerals are composed
of chemical elements. The periodic table of elements will be familiar to most
readers of this book; it is reproduced here (Table 1.1) for reference purposes,
and includes the atomic numbers and atomic weights of the first 92 elements
including all 90 known to exist naturally on Earth*, The horizontal rows are
the seven periods corresponding to the number of electron shells surrounding
an atomic nucleus. The major vertical columns contain groups of elements
that are related by a similar number and configuration of electrons in an
outer shell of up to eight electrons, and hence have comparable chemical
properties — properties that commonly show progressive shifts within a
group related to the differing atomic weights of its members. Well-recognized
groups among the commoner elements include the alkali elements (Li, Na, K,
Rb, Cs), the alkaline earth elements (Ca, Sr, Ba), the halogens (F, Cl, Br, I),
and the inert or noble gases (He, Ne, Ar, Kr, Xe).

Note that a systematic progression when tabulated in order of increasing
atomic number is interrupted in periods 4 to 7 by sets of elements occurring
immediately after group IIA. Following the simple Bohr model of the atom,
with progressively higher atomic numbers increasing by integral steps, elec-
trons have to be added one by one to the envelope of electron shells to
balance the increase in the number of protons in the nucleus. These electrons
are added to the outer shell (the one whose electron configuration has a
decisive influence on chemical properties) in atoms up to calcium, atomic
number 20. After calcium and succeeding group-IIA elements, however, a
certain number of electrons are added progressively to inner electron shells,

*Technetium, atomic number 43, has no stable nuclides and does not occur naturally on
Earth; its presence in certain stars has, however, been inferred from examination of their
spectra indicating that thermonuclear synthesis was proceeding there at or just before
the time that their light now reaching us was emitted. Promethium, atomic number 61,
similarly has not been detected on Earth.



