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This book follows the Standard TEC Unit Mechanical Science 11
which is a third-level Unit in the certificate programmes in

Preface mechanical and production engineering.

The specification of the course is as follows.

Unit Title Mechanical Science

Unit Level 111

Unit Value One

Design Length 60 hours

Prerequisite Units TEC U75/036 Engineering
Science 11

Credits for Units None

Aims of Unit To develop the student’s analyti-

cal techniques in the application
of scientific principles to
mechanical engineering situ-
ations

Special Note The Unit is designed to be stud-
ied concurrently with or after
TEC U75/037 Engineering
Science 111

To fulfil the aims of the Unit, the book is written with reference
to Engineering Science 11 and recognises the fact that Engineering
Science 111 may be studied concurrently. However, it is assumed
that only the statics and dynamics sections of Engineering Science
II are needed as far as Mechanical Science III is concerned,
although some small overlap between the two is inevitable and
consequently forms some revision of essential information.

The combination of Physical Science I and Engineering Science
II collectively covers forces on materials, dynamics, static equilib-
rium of forces and pressure in fluids in sufficient detail to be able to
cover the contents of Mechanical Science III (and the relevant
section of mechanics in Engineering Science III if this is studied
concurrently).

The contents of Mechanical Science III are

(1) Stress, Strain and Elasticity of Materials

(2) Simple Theory of Bending of Symmetrical Beams
(3) Simple Theory of Torsion of Circular Section Bars
(4) Laws of Angular Motion



viii PREFACE

(5) Simple Harmonic Motion

(6) Linear and Angular Kinetic Energy

(7) The Application of Bernoulli’s Equation to Fluids in
Motion.

These topics are covered essentially from first principles using
these to show where any formula, which is to be applied to
problems, comes from. The range of problems covered goes slightly
beyond the bare minimum required, so as to allow the student an
opportunity of extending his mechanical engineering knowledge
for the purpose of progression in the fields of mechanical and
production engineering.

Our thanks go to Mrs P. R. Lancaster for the careful typing of
the script and to Dr P. Gallagher of Bradford College for his help in
the early stages of preparation.

March 1977 : P. R. LANCASTER
D. MITCHELL
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2. Develops, and uses, the simple theory of bending of symmetrical
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Identifies, with the aid of a sketch, the position of a neutral
plane in a symmetrical beam under the influence of a bending
force system.
Defines bending moment.
Shows, by use of the equations of equilibrium, that under
equilibrium conditions (a) the neutral planc (axis) passes
through the centroid of cross-section, (b) the bending stress
is given by ¢ = My/I
Solves problems, with section characteristics restricted to rec-
tangular, circular or idealised I-section beams, involving:
(a) maximum allowable stresses, (b) bending moments or
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Given a specified section modulus (Z) uses standard section
handbooks to select appropriate beams.
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5. Describes, and solves problems involving, simple harmonic
motion

Describes the relationships between (a) restoring force and
displacement (b) displacement and time (c) velocity and time
(d) acceleration and displacement.

Defines simple harmonic motion.

Derives the interrelationships between the quantities
specified in (a), (b), (c) and (d) above.

Relates simple harmonic motion to circular motion of a
phasor and circular frequency.

Solves problems involving simple harmonic motion in-
cluding the simple pendulum and body supported by a
spring.

Describes resonance as occuring when the applied frequency
equals the natural frequency.

Discuss the problems that can arise when resonance occurs,
e.g. in the use of tools.

6. Describes, and solves problems, involving linear and angular
kinetic energy

Derives from first principles the expressions for (a) linear
kinetic energy and (b) angular kinetic energy of a body.
Solves problems involving linear and/or angular kinetic
energy, including flywheels and lift systems.
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7. States and uses Bernoulli’s equation

States Bernoulli’s equation.

States the equation of continuity for steady flow through
tapered pipes.

Applies Bernoulli’s equation to solve problems involving
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1 Stress, Strain and
Elasticity

1.1 COMPOUND BARS

An example of the class of problems called ‘statically inde-
terminate’ is that of compound bars subjected to axial forces, that
is, bars made of two or more different materials with forces applied
along the lengths of the bars. In this context, ‘statically inde-
terminate’ simply means that the equations of static equilibrium
are not sufficient to find the separate forces in each component of
the compound bar.

Consider the example of a cylinder of material A with a core of
material B subjected to a compressive load W, as shown in figure
1.1. The platform through which the load is applied is assumed to
be rigid, that is, it can transmit forces, but is not deformed by them.

lw

: L 4
material B _| material A
csab -y /A———"c.s.q. a

N
AR

Figure 1.1

Let the force carried by material A be F 4 and the force carried by
material B be Fg. Then, by consideration of equilibrium of the
platform through which the load is applied

Fy+Fg+W =0 (1.1)

(Infigure 1.2, F , and Fgare the forces exerted by the assembly on
the platform, that is, it is assumed that the stresses in the materials
A and B are tensile stresses, until proved otherwise. The reader will
appreciate that the opposite is true and expect, therefore, to obtain
a negative numerical answer for F, and Fg.)

Equation 1.1 is the only equation that can be derived by
considering the equilibrium of the system. The problem is sym-
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Figure 1.2

metrical about an axis so that the moment equation yields nothing,
and there are no horizontal forces. Another equation is required to
enable the two unknowns F, and Fg to be found, and this can only
come from consideration of the deformation of materials A and B.

In the present example, materials A and B have the same original
length (unloaded length) and have the same deformed length at all
stages of loading, because the load-applying platform is rigid, that is,
the change in length and the original length are the same for
materials A and B. Thus

the strain in A = the strain in B

€A = €p
or
ot Y |
E,  Ey (1.2)

This gives the necessary second equation, because equation 1.1 can
be rewritten in terms of stress, as follows

opa+agh+W =0 (1.3)

and equations 1.2 and 1.3 can be solved for o, and o3p.

The essential point in this type of problem is that some
information about the deformation of the component materials
must be avilable (or be deduced) before the problem can be solved.
A numerical example should help to make this clear.

Example 1.1

A cylinder of steel, outside diameter 50 mm, inside diameter 30 mm
encloses a concentric core of aluminium of diameter 25 mm. The
original length of the steel is 50.01 mm and that of the aluminium
50 mm; the assembly is subjected to a compressive load of 10 kN.
Calculate what proportion of the load is carried by each
material. Take E; (steel) = 205 x 10° N/m?; E, (aluminium) = 90
x 10° N/m?2. ’
Solution First calculate the areas of each component.

A = %(502 —30?) = 4001 mm?

A e %(25)2 — 156.25® mm?

Then equation 1.3 gives
400m x 64+ 156.25n x 6,+ 10000 = 0 (1.4)
In this example, the final length of the components is the same,

but the initial length is not. Thus if A is the change in length of the
aluminium, the change in length of the steel is (A +0.01) mm, that is

A
e,=—

50

A+001  A+0.01
e, = o

50.01 50

(While 0.01 can be neglected in the denominator, it cannot be
neglected in the numerator because A is of about the same
magnitude.) Therefore

001

e, =¢e,+ 50

or in terms of stress



O'S 68
— =—240.0002 L5
E_E" (1.5)

Equation 1.5 is the equivalent of equation 1.2. 0.0002 is the extra
strain carried by the steel before it is compressed to the same length
as the aluminium. Thereafter the strain in both components is the
same. Equation 1.4 becomes

0,+0.3916,+7.958 =0
and equation 1.5 becomes
o, =2.278¢,+41
hence

2.2780,+0.3910,+41+7.958 =0
48.958

%= T 669
= —18.343 N/mm?

o, = —7957 N/mm?

50 x 18.343

A=50e, = — ORiE —0.010 mm

Example 1.2

A light rigid bar is suspended horizontally from two wires 1 m
apart. Wire A is of steel, 6 mm diameter, E = 205 GN/m? and
wire B is of duralumin, 15 mm diameter, E = 70 GN/m?. Where
must the load be applied if the bar remains parallel to its original
position?

Solution For equilibrium of the bar (see figure 1.3) resolving
vertically

STRESS, STRAIN AND ELASTICITY S

R AR LR AR RN

1m

= J
1PA 1P rPB
T, 3
VP
Figure 1.3
PA+PB = P (a)
and
Pxx="Pyx1 (b)

where P, and Py are the tensile loads in the steel and duralumin
wires respectively.

A further equation is found from the fact that the extension of
each wire must be the same if the bar remains horizontal after P has
been applied.

4P,

Stress in steel wire = ———— 2
nTx6%2x107°

= 3.537 x 10*P, N/m?

4
Strain in steel wire = 2 — M
E 205 x 10°

=1.725x 10" 7P,
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Extension of steel wire = strain x original length

=1725x10""P,m

Similarly

Extension of duralumin wire =

Thus
8.084Pg = 17.25P,
and
Pg =2.134P,
Using this in equation (a) gives

therefore

P, =0319P
and

Py = 0.681P

and from equation (b)

Py
=—=0.681
x=- m

4Py

tx 152 x107% x 70 x 10°

=8.084 x 10"®Pym

(©

(d)

(e)

If the stress in the steel is 80 MN/m?2, calculate the value of P, the

stress in the duralumin, and the extension of each bar.

P, = stress in steel x area of steel

= 80 x 10° x% x (6 x 107 3)?
=2262N
from equation (d)
P=7091N

and from equation (e)

Py =4829 N
hence
. . Py
stress in duralumin = -
area of duralumin
4829 x 4

“r(15x 1073)2

= 27330000 N/m?
that is

op = 27.33 MN/m?
Extension of each bar = 1.725 x 1077P,,
=8.084 x 107 8Py
=3902x10"*m
= 0.39 mm
1.2 THE EFFECT OF TEMPERATURE CHANGE
Owing to temperature rise, the linear dimensions of an engineering

component will change. If [, is the original length of a bar and [ is
the length after a change in temperature, then

I = lp(1+aT) (1.6)

where a is the coefficient of linear expansion of the material, and T'is



the temperature change (which may be positive or negative).
Transposing equation 1.6 gives

l‘—lo _
By

oT (1.7)

or

change in length
original length

The quantity o has the units and form of ‘strain’ and is

sometimes called the ‘temperature strain’.

stud, material A
cs.a.a rigid nut

7777777
A\

(LN

tube, material B, csa. b

Figure 1.4

Consider the example shown in figure 1.4. The nut at theend of a
stud of material A is screwed down finger tight on a tube of material
B. The nut is assumed to be rigid and the whole assembly has its
temperature uniformly raised by an amount 7. What stresses are
induced in the stud and the tube?

Assume that the coefficient of linear expansion of the tube is
greater than that for the stud. If the components were allowed to
expand freely, the result would be that the increase in length of the

STRESS, STRAIN AND ELASTICITY 7

tube would be greater than that for the stud by an amount
lolag—ap)T

see figure 1.5.

Lo LOGBT

777777777V X

S

loapl =™

Figure 1.5

However, the effect of the rigid nut is to ensure that the lengths of
tube and stud remain the same. This means that the nut pushes
back the tube to some level XX, say, and also pulls out the stud to
the same level. Thus the effect of the temperature rise is to induce a
tensile stress in the stud and a compressive stress in the tube.

Consideration of figure 1.5 reveals that

increase in length  decrease in length

of stud of tube lo(ap—an)T

Thus if 04 is the stress induced in the stud, the increase in length
must be

g
loeA = IOE_A
A
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and the decrease in length of the tube must be

The minus sign is included because all stresses are initially assumed
tensile, that is, positive. Therefore

OA (5
IOE—A— IOE; = lo(ap—ap)T

or, since the original lengths were equal

E;—E—B=(a5—ozA)T - (L8)

— (77 7777777 A%

Fa is force exerted by the stud on the nut (or wall)
Fg is force exerted by the tube on the nut (or wall)

Figure 1.6
Considerations of the static equilibrium of the assembly (figure
1.6) reveal that
F A + F B = 0

or

gpa+aghb =0 (1.9)

Compare this with equation 1.1 noting that in this example the
externally applied load is zero. Equations 1.8 and 1.9 can now be
solved for o, and 0. It should be noted that g, and o5 found from
equations 1.8 and 1.9 are stresses due to the rise in temperature
only. In this example the nut was initially only finger tight so that
initial stresses were zero. If the nut had been screwed down to give
an initial compressive stress in the tube and a tensile stress in the
stud, these stresses would simply have been added algebraically to
those due to temperature rise.

1.3 ENGINEERING AND TEMPERATURE STRAIN

Equation 1.8 of the previous section may be transposed to read

OA

%
EA+aAT—EB+aBT (1.10)

Each component of this equation has the units of strain, and indeed
reexamination of figure 1.5 will show that

(3

is the total change in length of component A; similarly for
component B. Thus

7
—+a,T
E,,,JrA

is called the total strain of component A and is made up of two parts

L .0
the engineering strain E—A
A

and



