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Preface

We wrote this book to provide a concrete and readable text for the tradi-
tional course in elementary differential equations that science, engineering,
and mathematics students take following calculus. It includes enough material
appropriately arranged for different courses varying in length from one quarter
to two semesters. Our treatment is shaped throughout by the goal of an expo-
sition that students will find accessible, attractive, and interesting. We hope
that we have anticipated and addressed most of the questions and difficulties
that students typically encounter when they study differential equations for
the first time.

The book begins (in Section 1.1) and ends (in Section 9.4) with discussions
of the mathematical modeling of real-world situations. The fact that differential
equations have diverse and important applications is too familiar for extensive
comment here. But these applications have played a singular role in the
historical development of this subject. Whole areas of the subject exist mainly
because of their applications. So in teaching it, we want our students to learn
first to solve those differential equations that enjoy the most frequent applica-
tion. ’

We therefore make consistent use of appealing applications for both
motivation and illustration of the standard elementary techniques of solution
of differential equations. A number of the more substantial applications are
placed in optional sections, each marked with an asterisk (in the table of
contents and in the text). These sections can be omitted without loss of con-
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tinuity, but their availability can provide instructors with flexibility for varia-
tions in emphasis.

While according real-world applications their due, we also think the
first course in differential equations should be a window on the world of
mathematics. Matters of definition, classification, and logical structure deserve
(and receive here) careful attention—for the first time in the mathematical
experience of many of the students (and perhaps for the last time in some
cases). While it is neither feasible nor desirable to include proofs of the funda-
mental existence and uniqueness theorems along the way in an elementary
course, students need to see precise and clearcut statements of these theorems,
and to understand their role in the subject. We do include some existence and
uniqueness proofs in Section 9.4, and occasionally refer to them in the main
body of the text.

The list of introductory topics in differential equations is quite standard,
and a glance at our chapter titles will reveal no major surprises, though in the
fine structure we have attempted to add a bit of zest here and there. A number
of different permutations in the order of topics are possible, and the table that
follows this preface exhibits the logical dependence between chapters. In most
chapters the principal ideas of the topic are introduced in the first few sections
of the chapter, and the remaining sections are devoted to extensions and
applications. Hence the instructor has a wide range of choice regarding breadth
and depth of coverage.

Chapter 1 naturally treats first order equations, with separable equations
(Section 1.4), linear equations (Section 1.5), substitution methods (Section 1.6),
and exact equations (Section 1.7) comprising the core of the chapter. Chapter 2
is devoted to linear equations of higher order. In order to make the concepts
of linear independence and general solutions more concrete and tangible,
we discuss only second order equations in Section 2.1, and follow with the nth
order case in Section 2.2.

Chapter 3 begins with a review of the basic facts about power series that
will be needed. The first three sections of the chapter treat the standard power
series techniques for the solution of linear equations with variable coefficients.
We devote more attention than usual to certain matters—such as shifting
indices of summation—that are mathematically routine but nevertheless trou-
blesome for many students. In Section 3.4 (optional) we include for reference
more detail on the method of Frobenius than ordinarily will be covered in the
classroom. Similarly, we go slightly further than is customary in Section 3.6
(optional) with applications of Bessel functions. Chapter 4 on Laplace trans-
forms is rather standard, though our discussion in Section 4.6 (optional) of
impulses and Dirac delta functions may have some merit.

There is much variation in the treatment of linear systems in introductory
courses, depending on the background in linear algebra that is assumed. The
first two sections of Chapter 5 can stand alone as an introduction to linear
systems without the use of linear algebra and matrices. The last four sections
of Chapter 5 employ the notation and terminology (though not so much



theory) of elementary linear algebra. For ready reference, we have included in
Section 5.3 a complete and self-contained account of the needed notation and
terminology of determinants, matrices, and vectors.

Chapter 6 on numerical methods requires some special comment. Personal
computers are now with us and here to stay. Pocket computers are relatively
inexpensive and already in the hands of some students. The great difference
(in the perception of students) between personal computing and mainframe
computing may not yet be universally appreciated. Students can now envision
the numerical approximation of solutions as a routine and commonplace
matter. Our viewpoint in Chapter 6 is that understanding and appreciation
of numerical algorithms is enhanced (and rendered more concrete to students)
by discussion of their computer implementations. We decided to include
illustrative programs because no flowchart has the convincing tangibility of a
program that actually runs. Our choice of programming language was moti-
vated by the recent adoption of BASIC as the lingua franca of personal
computers. Moreover, only in BASIC could we include programs that without
extensive discussion would be intelligible and informative to students with
little or no programming experience. In another vein, it is pointed out in the
Chapter 1 summary that the first four sections of Chapter 6 can be covered at
any point in the course subsequent to Chapter 1. The increasingly widespread
use of computers may provide a motive for covering numerical methods earlier
than has been the custom in the past.

Chapters 1 through 6 are devoted to ordinary differential equations.
Chapters 7 and 8 treat the applications of Fourier series, separation of vari-
ables, and Sturm-Liouville theory to partial differential equations and boundary
value problems. After the introduction of Fourier series, the three classical
equations—the wave and heat equations and Laplace’s equation—are dis-
cussed in the last three sections of Chapter 7. The Sturm-Liouville methods
of Chapter 8 are developed sufficiently to include some rather significant and
realistic applications.

Apart from its final section on existence and uniqueness, Chapter 9 is a
brief introduction to qualitative properties and stability of solutions, with
numerous applications to competition, survival, and extinction of species.

Probably in no other mathematics course beyond calculus are the exer-
cises and problem sets so crucial to student learning as in the introductory
differential equations course. We therefore devoted great effort to the develop-
ment and selection of the approximately 1750 problems in this book. Each
section contains more computational problems (“solve the following equa-
tions,” and so on) than any class will ordinarily use, plus an ample number of
applied problems. We were, however, very sparing in our inclusion of purely
theoretical problems. The answer section includes the answers to all odd-
numbered problems and to some of the even-numbered ones.

All experienced textbook authors know the value of critical reviewing
during the preparation and revision of a manuscript. In writing this book we
profited greatly from the advice of the following exceptionally able reviewers:

PREFACE XV
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W. Dan Curtis, Kansas State University; Bruce Conrad, Temple University;
James W. Cushing, University of Arizona; James L. Heitsch, University of
Illinois at Chicago; Erich Zauderer, Polytechnic Institute of New York;
Anthony Peressini, University of Illinois; and William Rundell, Texas A &
M University.

We owe special thanks to Professor George Feissner, State University of
New York at Cortland, whose detailed and perceptive analysis of our manu-
script affected every section of every chapter of the book. Finally, we cannot
adequately thank Alice F. Edwards and Carol W. Penney for their continued
assistance, encouragement, support, and patience.
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Introduction

Introduction
and First Order
Differential Equations

The laws of the universe are written largely in the language of mathematics.
Algebra is sufficient to solve many static problems, but the most interesting
natural phenomena involve change and are best described by equations that
relate changing quantities.

Because the derivative dy/dt = f'(¢) of the function f may be regarded
as the rate at which the quantity y = f(¢) changes with respect to the indepen-
dent variable ¢, it is natural that equations involving derivatives are those that
describe the changing universe. An equation involving an unknown function
and one or more of its derivatives is called a differential equation, and the
study of differential equations has two principal goals:

1. To discover the differential equation that describes a physical situation;
2. To find the appropriate solution of that equation.

Unlike algebra, in which we seek the unknown numbers that satisfy an equa-
tion such as x* 4+ 7x2 — 11x + 41 = 0, in solving a differential equation we
are challenged to find the unknown functions y = g(x) for which an identity
such as g'(x) — 2xg(x) = 0—in Leibniz notation, '

—holds on some interval of real numbers. Ordinarily we will want to find all
solutions of the differential equation if possible.
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The following three examples illustrate the process of translating scien-
tific laws and principles into differential equations, by interpreting rates of
change as derivatives. In each of these examples the independent variable is
time ¢, but we will see numerous applications in which some quantity other
than time is the independent variable.

EXAMPLE 1 Newton’s law of cooling may be stated in the following form:
The time rate of change (the rate of change with respect to time ¢) of
the temperature 7(¢) of a body is proportional to the difference between
T and the temperature A of the surrounding medium. That is,

daTr
= K4—T) 6]

where k is a positive constant.

Thus the physical law is translated into a differential equation. If
we are given the values of k£ and 4, we hope to find an explicit formula
for T(¢), and then—with the aid of this formula—we can predict the
future temperature of the body.

EXAMPLE 2 The time rate of change of a population P(¢) with constant
birth and death rates is, in many simple cases, proportional to the size
of the population. That is,

dP -
T kP 2
where k is the constant of proportionality.

EXAMPLE 3 Torricelli’s law implies that the time rate of change of the
volume V of water in a draining tank is proportional to the square root
of the depth y of the water in the tank:

ﬂ/ PR — 1/2

2 = —ky 3
where k is constant. If the tank is a cylinder with cross-sectional area A4,
then ¥V = Ay, and so dV/dt = A(dy/dt). In this case Eq. (3) takes the
form

ay _ _poan ‘

= = iy @
where h = k/A.

Let us discuss Example 2 further. Note first that each function of the
form

P(t) = Ce** 4)
is a solution of the differential equation, Eq. (2),
dP _
= = kP.

We verify this assertion as follows:
P'(t) = Cke** = k(Ce**) = kP(t)

CHAPTER 1 INTRODUCTION AND FIRST ORDER DIFFERENTIAL EQUATIONS



for all real numbers ¢. Because substitution of each function of the form given
in (5) into Eq. (2) produces an identity, all these functions are solutions of
Eq. (2).

Thus, even if the value of the constant & is known, the differential equa-
tion dP/dt = kP has infinitely many different solutions of the form P(t) =
Ce**—one for each choice of the “arbitrary” constant C. This is typical of
differential equations in general. It is also fortunate, because it allows us to
use additional information to select from all the solutlons a particular one
that fits the situation under study.

EXAMPLE 4 Suppose that P(z) is the population of a bacterial colony at
time ¢, that the population at time # = O (hours, h) was 1000, and that
the population doubled after 1 h. This additional information about the
function P(¢) yields the following equations:

1000 = P(0) = Ce® = C,
2000 = P(1) = Ce*.

It follows that C = 1000 and that k = In 2. Thus the function P(r)
describing the population of this particular bacterial colony is known
exactly:

P(t) = 1000¢* = 2,

Therefore, we can predict the population at any future time; for example,
the population at time ¢ = 90 minutes (min) (1.5 h) will be P(1.5) =
1000e¢1-912 2 or about 2828 bacteria.

The condition P(0) = 1000 is called an initial condition because we nor-
mally write differential equations for which ¢ = 0O is the starting time. Figure 1.1
shows a number of graphs of the form P(¢f) = Ce** for which k = In 2. The
graphs of all the solutions of dP/dt = (In 2)P in fact fill up the entire two-
dimensional plane, and no two intersect. Moreover, the selection of any point
on the P-axis amounts to a determination of the value P(0). Because exactly
one solution passes through each such point, we see in this case that an initial
condition P(0) = P, may determine a unique solution agreeing with known
data.

It is possible that none of these solutions fits the known information. In
such a case we must suspect that the differential equation—a mathematical
model of the physical phenomenon in question—may not adequately describe
the real world. The solutions of Eq. (2) are of the form P(t) = Ce** where C
is a positive constant, but for no choice of the constants k and C does P(f)
accurately describe the actual growth of the human population of the world
over the past hundred years. We must therefore write a more complicated dif-
ferential equation, one that takes into account the effects of population pres-
sure on the birth rate, the declining food supply, and other factors. This should
not be regarded as a failure of the model of Example 2, but as an insight into
what additional factors must be considered in studying the growth of popula-
tions. Indeed, Eq. (2) is quite accurate under certain circumstances—for

Section 1.1 Introduction 3



