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Preface

In considering the sustained progress of the field of integrated circuits, we find
important major advances that have been made over a relatively short period.
Most outstanding has been the dramatic development of the microprocessor
(1P) in the digital IC field, accompanied by supplemental progress in the linear
IC group. This significant progress has been sparked by important advances in
large-scale-integration (LSI) technology in achieving considerably greater density
of active devices on the IC chip, including both the bipolar and the MOS field-
effect types of transistors, and also the new combination of both devices (called
a BiMOS or BiFET chip). Combined with these improved fabrication techniques,
we find clever circuit designs within the denser IC chip that offers a choice of
various monolithic microprocessor units, which merit the proud description of
“computer-on-a-chip.”

This active development of microprocessors and their attendant memory
circuits in the digital division has fostered a corresponding upsurge of advanced
devices in the linear IC field. Exploiting the broad flexibility of the micro-
processor, we find innovative designs that include linear ICs diverse areas,
ranging from the automotive field for engine controls to the electronic-
instruments field for various automatic testing functions. In these new functions,
many advanced forms of linear ICs are employed to handle the analog signals
that feed the digital processing.

Other linear IC developments, such as in the consumer-communication
areas, all emphasize the continuing trend for replacing discrete circuits (with
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xiv Preface

their multiplicity of individual transistors and their numerous interconnections)
with the more compact and reliable ICs. In the broad view, it is fair to say that
the process of supplanting discrete transistor circuits by the emergent ICs is
now as much a revolutionary development as was the previous upheaval that
supplanted vacuum tubes with transistors.

For the linear IC field, advanced developments include newer versions of
or AMmPps (including the previously mentioned BiFET types), increased utiliza-
tion of the phase-locked-loops (PLL) units in the communications area, and a
proliferation of devices interfacing with the newer digital developments. To cite
some additional examples, we find more versatile A/D and D/A converters, more
multipliers for signal conditioning and a greater variety of peripheral drivers for
various interface and display purposes.

This work is an updating and expansion of Prensky’s well-received Manual
of Linear Integrated Circuits: Operational Amplifiers and Analog ICs published
by Reston Publishing Company in 1974. Its aim is to provide the technician and
engineer with practical information on the selection of linear ICs for use in a
large variety of applications which include dc and audio amplifiers, waveform
generation, D/A and A/D conversion, active filters, voltage regulators, and com-
munication systems.

In keeping with the original theme of representing well-accepted linear IC
models from all the major manufacturers, considerable care has been taken in
presenting the extensive cross-reference list in Appendix III. This listing of
around 400 frequently used model numbers is an important practical feature;
it allows the user, often confronted with a clutter of type numbers, to rapidly
identify a particular manufacturer’s designation, and also to characterize it in
relation to its general class (often as a second source of a better-known type).

This same feature of including types from all the major manufacturers
has been carried out in the presentation of the selection guide for op AMPs (Ap-
pendix II). Further, as a source for obtaining greater details on particular models
that are available from the comprehensive data sheets supplied by the manufac-
turers, a current list of their addresses is given in Appendix IV.

The maturing growth of the semiconductor industry strengthens the trend
toward “standardized” types, both for op amps and for the other forms of
linear ICs; to this desirable end, the manual serves as a practical tool to high-
light such specific types, by illustrating selected applications of these versatile
devices.

The authors are grateful to the many manufacturers who supplied us with
material. Any errors, however, that may appear in the text are our responsibility.

SoL D. PRENSKY
ARTHUR H. SEIDMAN
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Introduction to Linear
Integrated Circuits

1-1 GENERAL SIGNIFICANCE OF LINEAR
INTEGRATED CIRCUITS

The category of linear integrated circuits (LICs) can be distinguished, in a broad
sense, from the category of digital integrated circuits (DICs); thus the numerous
and diverse types of integrated circuits can be classified into these two large
groups. Both forms of ICs (also known as microcircuits) have proved immensely
popular, and they are rapidly supplanting circuits using discrete transistors. This
stems from the greater convenience and increased reliability offered by these
small devices.

The linear IC group encompasses circuits of the analog type, where the
input, in general, is in the form of a smoothly varying signal and the output
usually is an amplified version of the input signal. This is in contrast to the zero-
one switching action of the digital IC. The operational amplifier (oP aMP)is an
outstanding and popular example of the analog group, which, in addition, in-
cludes other nondigital types (even though the operation may be nonlinear).
Thus the LIC group includes regulators and other forms of signal conditioners
that are designated “linear” or analog, as opposed to the digital types. The DIC,
on the other hand, depends essentially on its switching function, and this group
encompasses a large number of devices, such as gates, flip-flops, memories, and
microprocessors.

As might be expected, with the wide diversity of ICs there are some
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2 Introduction to Linear Integrated Circuits

devices that possess characteristics of both groups, as in the case of interface cir-
cuits. Examples of interface circuits include the analog-to-digital (A/D) con-
verter and its counterpart, the digital-to-analog (D/A) converter. In addition,
important use is made of these “in-between” types in providing a great variety
of control circuits using the highly versatile microprocessor, where analog sens-
ing elements are conditioned to work with the digital processing of microcom-
puters. These special types are generally classified as belonging to the linear
group. Nevertheless, there need be no confusion about these classifications, as
long as we do not interpret the designation of linear in too literal a fashion.

Thus the linear group may include devices that exhibit nonlinear transfer
characteristics but that still are of an analog nature (such as the logarithmic
amplifier). Keeping in mind the broad interpretation of these classifications,
this text concentrates on the entire linear group as opposed to the other major
(and very large) group of digital ICs.

1-2 DEVELOPMENT OF LINEAR INTEGRATED CIRCUITS

The linear group of ICs attained its importance and prominence when it even-
tually became possible to provide, at a reasonably low cost, amplifiers of the
operational-amplifier type. The development can be traced from the time (ap-
proximately 1964) when pairs of transistors, forming integrated differential
amplifiers, were first fabricated on a single silicon chip. This step represented
a significant advance over the use of discrete transistors in the basic circuit; it
demonstrated the ability of the IC to greatly reduce the troublesome tempera-
ture dependence of discrete transistors, even when the separate transistors were
laboriously matched (as discussed later). Since both transistors of the differential
pair could be fabricated simultaneously on the same IC chip, it was possible, by
this step alone, to make an improvement by whole orders of magnitude in allevi-
ating the temperature-drift problem—from millivolts for the discrete transistor
to just microvolts per degree Celsius for the integrated pair.

About a year later, another enormous step forward was taken with the
introduction of the integrated general-purpose operational amplifier. This IC
was able to take good advantage of the integrated differential-amplifier stage
for the first stage of a multistage amplifier and was capable of open-loop gains
well beyond 10,000—all in a very compact package. By the use of an external
feedback resistor, the IC operational amplifier (of the 709 type, for example)
became a low-cost and highly versatile amplifier that incorporated 9 transistors
and 12 associated resistors in a conveniently small package. This relatively
simple operational amplifier could easily perform many of the functions of
discrete amplifiers and could do so at a lower cost and in a much more reliable

1A popular IC type.



Using a Simple Linear Integrated Circuit 3

and versatile form. The IC operational amplifier offered designers a highly flex-
ible tool that approached a basic building block around which a great number
of desired circuits could be devised quite simply.

1-3 USING A SIMPLE LINEAR INTEGRATED CIRCUIT

The ease of use and the great utility of LICs can be illustrated by selecting a
simple example in the form of a general-purpose operational amplifier (com-
monly called an op AMP). Contrasted with the use of discrete components (such
as transistors, resistors, and small capacitors) in a multistage amplifier, the use of
an OP AMP can often make the design of a desired amplification function (either
direct or alternating current) a straightforward operation; in many cases it would
simply mean choosing values for two external resistors (Ry and R;) to use with
a general-purpose OP AMP, such as the very popular 741 type? illustrated in
Fig.1.1.

To gain a clear appreciation of the superior convenience and flexibility
offered by the IC op AMP compared to a traditional amplifier made up of
discrete components, it is instructive to trace the steps needed in the case of
both amplifiers to accomplish a typical amplification function.

Let us assume a project requiring a direct-coupled amplifier with a stable
gain of, say, 500, where the input comes from a light sensor that provides a
slowly varying dc signal ranging from 1 to 10 mV. (This would call for an
output from the amplifier of % to 5V, as displayed on a dc voltmeter.) In the
next two paragraphs we can follow the necessary procedures to accomplish the
same purpose in each case.

Figure 1.1 Functional symbol di-
agram of an operational
amplifier (OP AMP); the
simple gain formula ap-
plies to a typical opera-
tional amplifier used as 0 7[ &] .
an inverting amplifier. ¢ 7| R, | in

]

2 Another very popular IC type with internal compensation.



4 Introduction to Linear Integrated Circuits

Figure 1.2 Discrete form of direct-
coupled amplifier: it re-
quires calculation of proper
values of at least six re-
sistors to accomplish de-
sired gain; compare this to
a simple ratio of two re-
sistors for the OP AMP in
Fig. 1.1.

In the case of the discrete amplifier, we might choose the circuit of Fig.
1.2, calling for an NPN transistor (Q,) followed by a PNP type (Q, ), arranged
in the “compound” type of circuit, where the bias voltages can be handled more
conveniently in this type of complementary transistor connection. Making use
of simplified design relations, we would first establish the Q-point for the out-
put stage to ensure that we stay within the linear operating range. With a supply
voltage of around 20 V, this would call for a collector voltage of about half the
supply, or approximately 10 V, for Vg, at the Q-point, ensuring no distortion.
Then, as suggested by Lenk,® we would choose proper values for the resistors;
for example, we might choose R L, as 1 k&, requiring collector current of Q,
to be about 10 mA. Proceeding from this, values of R, and then of Ry, and
Rp, are selected for the proper gain relationship of R 1/RE for each stage; then
the selection of approximate values of R, and R, is made for obtaining proper
bias currents. As an additional simplification, R, is shown to be variable, so that
it may be easily set to obtain the correct meter reading for collector current of
Q,; finally, a final adjustment of R, is again made, if required, so that the full
output range is obtained without distortion. It will be noted that even when a
bit of cut-and-try process is used here to reduce unnecessarily precise calcu-
lations, the simplified procedure still involves working with six resistor values to
accomplish the proper operation of the amplifier in producing a direct-coupled
gain of about 500, together with a satisfactory output swing between % and 5V,
as desired.

35. D. Lenk, Handbook of Simplified Solid-State Circuit Design, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1971.



