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The goal of this memoir is to formulate in a modern global way the

theory, due in its local form to Sophus Lie, which connects Lie‘algebras
of veector fields on a differentiable manifold with 1ooal'group£ and
groups of transformations ssting on the manifold.

Chapter I is preliminary to the mein trend of the memoir and is
concernsed with the question of giv;ng a natural 'quotient! differentiable
structure to the_aét of leaves of an involutive differential system. I
have decided fo develop this separately, rather than in context with its
application to transformation groups, since I feel that it may be of some
indepehdent interest.

In chapter II we develop the theory of infinitesimal and local
transformation groups in its greatest generality. Aside from proving
the basic tool theorems that will be needed in the following mor special-
ized chapters, we give a unigueness theorem for a local transformation
group with a given domain and given infinitesimal generator and also s
global form of Lie's Second Fundamental Theorem (Hauptsatz der Gruppen-
theorie).

In chapter III we characterize in a number of ways the c¢lass of
infinitesimal transﬂoﬁnatian groups which generate global transformation
groups. In chapter IV we use the results of chapter III to develop a Lie
theory connecting the Lie algebra of differentiable vector fields on a
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menifold with the group of differentiable homeomorphisms of the manifold
and use this to study the automorphisms of a structure given by & mani-

fold and a set of tensor fislds on the manifold.
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LIE THEORY OF TRANSFORMATION GROUPS

Chapter I
QUOTIENT MANIFOLDS DEFINED BY FOLIATIONS

A completely integrable differential system © on a differentiable
menifold M defines a partitioning (foliation) of M into meximal con-
nected integral menifolds (leaves) of @ . In this chapter we investigate
under what conditions the quotient space admita & natural menifold
structure, and the elementary properties of the quotient manifolds

that result.

1. Differentiable Manifolds.
- We will use the word 'differentiable' as a substitute for 1c™
or 'analytic' in contexts where both of the latter would be appropriate,
in order to .avoid having to give separate proofs for the ¢” oase and
the snalytic case of variou's theorems.

In order to get a smooth theory of quotient manifolds it is expediemnt
to drop the Hausdorff separation axiom in the definition of a manifold.
When this is done it 1s possible to medify the definition of a manifold
in terms of overlapping coordinate systems in such a way that the top'ology
of the manifold is a derived concept. Since there are several novel
points in this approach we will explain it briefly and at the same time
develop the notation we will need.

The reader familiar with the work of Ehresmann villl recognize the
debt the author owes to this pioneer in manifold theory, both in concepts
and in terminology. It 1s a debt which we gratefully ackmowlsdge.

We denote real Buclidian n-space by R® and by W .ee Wy We denote
the natural coordinstes on R . If M is a set, an n-dimensional chart
in M 1is a one-to-one map ¢ of a subset of M onto an open subset of

R® ., A real-valued funetion f with domain S €SN 1is sald to be
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differentiable with respect to ¢ at a point pes if pe(domain o)

and there is a differentiable functiom g defined in a neighborhood N
of olp) such tbat fog-lf N = gle(8), L.e. fogol
where both are defined. Two n-dimensionsl charts in M,p and ¥ , with

and g agree

domains U and V respectively, are said to be differentiably related
if each maps UNV onto an open set and the mappings ¢o ¢~} and |
¥o o=l are differentiable. If this is the case and f 1is & real-
valued function in M and peUNV then the differentiability of
at p with respect to ¢ and with respect to V¥ are equivalent.

An n-dimensiocnal differentiable atlas for M is a set of nutually
differentiably related n-dimensional charts in M whose domains cover '
M . An n-dimensional differentiable atlas for M 4is called complete
if it is not a proper subset of an n-dimnsional differentiable atlas-
for M . An n-dimensional differentiable menifold is a pair (M,Y¥)
where M is a set (called the point set of the manifold) and ¥ 1is
a complete n-dimensional differentiable etlas for M (called the atlas
of the manifold). If & 4is any n-dimensional differentiable atlas for
a set M , then the set ¥ of ¢ such that &V {ﬂ is an n-dimensional
differentiable atlas for ¥ is the unique complete n-dimensional differ-
' éntiable atlas including & . It is called the complete differentiable
atlas sssociated with & and (M,¥Y) is called the differentiable
manifold dof‘ingd by & .

Iir (H,i) is an analytic manifold then & isa C% a%tlas for M .

If ¥ is the complete C* atlas associated with & then (M,¥) is
called the C* mapifold associated with (M,8) .

It (M,¥7) 1is an n-dimensional differentiable manifold them the
domains of the charts in ¥ form a base for a topology J, called the
manifold topology of (M,¥) , and (M, J ) 1s called the underlying

-



LIE THEORY OF TRARSFORMATION GROUPS 3

topological space of (M,¥) . J 1s the weakest topology for M
rendering each ¥e¥ continuous, and 'with respect to J each Ve¥ is

a homeomorphihm. It follows that J 1is a Ty topology for M ; it need
not be a T, topology but 1if it is we oall' (M,Y) a Hausdorff
differentiable manifold. Similarly all adjectives qohventiomly applied

to (M, J) will be epplied to (M,Y) , e.g. (M,¥) will be called a
compact or a connected differentiable manifold if U is a compact or
connected topolegy for M . A real-valued function in M with domain
S 1s called differentiable at peM ir for some Ve? (and then auto-
matically for all ¥'e¥ with pe(domain ¥')) £ 4is differentiable at
p with respect to ¥ . We call f differentiable on S'S M if it
is differentiasble at each point of 8° s and differentiable in W 3§f ‘
it is dirrorentiablé on 8 . In the latter case f 1is eontinuous. |

A coordinate system for the n-dimensional differentiable msnifold
(M,¥) 1s an ordered n+1-tuplo_ (xl vee Xp, C) such that O 14 the
domain of a chart ¢e¥ and the X, &re real-valued functions in X
such that x; [0’ =ujoy . If f is a real-valued function In M then
ro.v'l is called the expression for f 4in terms of the coordinate
system (X, «.s xn » O ). We shall say thet (%) ove X, ,0) 1s a cudbieal
coordim te gystem of breadth 2a gcentered at peM 1f ¥(p) = (0 ... 0)
and (O ) = {(tl ees ty) eRR ¢ ltika}. In this oase if
[tm,,,il‘( @ail=1.e0 n-m then we call Z, = {qeo’t xm_i(q) = tm+1} the
m-dimensional siice of (x) ... x,, ') defined by t = (peg ooo 8y o
The mapping ¢ : p— (xl(p) van tm(p)) is an m-dimensional chart in b
and fo} 1s an m-dimensional differentiable atlas for Z, « We shall
often refer to Z; as an m-dimensional differentiable manifold, meaning
the manifold defined by {e} .

Let (M,¥) be a differentiable ﬁnni!'old and peM . For the moment
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denote by (l(p) the class of real-valued functions with domain open in
M and differentiable at p . Then the notion of tangent vector at P
can be defined exactly as in {1 Chapter III] . Pormuas (1) of

[1 page 771 1s proved for the C® case in Ez] » Except for this all
properties of the tangent space etc. can be proved exactly as in {11 .
The following additional elementary concepts are treated in (1) and
the reasder will be assumed to be familiar with them: (dirferentiable)
vector field, bracket of two differentiable vector fields, differential
of a differentiable function f (dencted by df ), differentiable
mapping F of one manifold into another and the differential of such
a mapping (denoted by 8F ). P is ocalled non-singular at p 1if aF
maps the tangent space at p one-to-one.

Let (M,¥) and (N,2) be differentiable manifolds with N S M
and let 1 be the inclusion map of N 4in M . We say that '(N,!’) is
a differentieble submanifeld of (M,¥) if 1 is differentiable and
everywhere non-singular. If moreover i 1is a homebmorphism into with
respect to the respective manifold topologies then (ﬁ,&) is said to
be regularly imbedded in (M,¥); and if further N is a closed subspece
of M with respect to the manifold topology of (M,¥) then (N,®) is

called a closed submanifold of (M,¥) . We identify the tangent space of
the submanif@ld‘ (N,#) at a point peN with its image under 81 (a
subspace of the:tangent space to (M,¥) at p) via the linear isemorphism
given by 61 .

If (M,¥) is a differentiable manifold, O a subset of M open with
respect to the manifold topology and if Y, = {*e! : domain ¥ & 0‘}
then ( O ,¥,) 1is a regularly imbedded differentiable submanifold of

(M,¥) called the open submanifold‘dfeﬁ.ned by O.
Let (M,¥Y) and (N,®) be manifolds. Folldwing Ambrose we call a

-
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if F eand F'l are differentiable or, equivalently, if ¢o-—g°F 1is a

pad
b d
e e

— —Ll

one-to-one map F of M onto N a diffeomorphism of (M,

one-to-one correspondence of & with ¥ . A mapping F defined near
ped and into N will be called a local diffeomorphism of (M,¥) 1into
(N,2) at p if it maps an open submanifold of (M,¥) containing p
diffeomorphically onto an open submanifold of (N,#) . By the implicit
function theorem a necessary and sufficient condition for th%s is that F
" be differentiable at p and B8F map the tangent space to"(M,!) at p
isomérphically onto the tangent space to (N,®) at F(lp) « If F:u—Y¥
is a local diffeomorphism of (M,¥) into (N,®) at each point of M we
call F a local diffeomorphism of (M,¥) into (N,&) .

Whenever no confusion will result (i.e. when a single complete atlas
Y 1is being considered) we will use the symbol M alone to denote a
manifold (M,¥), its underlying point set snd underlying topological space.

2. Foliations.

Let M be an n-dimensional difrerehtiablo manifold. We use the
term m-dimensional differential system on M for what Chevallei
[1 page 86] calls an m-dimensional distribution on ¥ , i.e, a mapping
8 which assigns to each ped an m-dimensional subspace Gp of the
tangent space to M at P . A vector field L in M will be said to
belong to © if for each p 4in the domain of L s Lpaep + The differ-
ential system @ will be called differentiable if for each ped there
is a neighborhood O of p and m differentiable vector fields
Ly ese Ly defined in O such that (L)), ... (Ly)g 18 a base for @
.at sach qe O. o 1s called involutive if it is differentiable and if
whenever X and ;’ are two differentiable vector fields in M with the
same dpmnin, both belonging to © , their bracket [x,¥] also belongs to
© . A submanifold N of M will be called an integral manifold of the
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differential system © on M if for eaeh point peN the tangent space
to N at p 1is ineluded in ep .

If © 1is an m-dimensional differential systemon M , & coordimate
system (% «++ Xy , O') will be called flat with respect to € if for,
each qtO (Ll)q eve (Xy)q 1is @ base for 8, , shere X, = 2/09x .
If (X ees X, (*) 1is a cubical coordinate system for M then a
necessary and sufficlent condition that it be flat with respect to 6
1s that each of its m-dimensional slices be an integral manifold of © .

THEOREM I. If © 4is an m-dimensional differential system

on M then a necessary and sufficlent condition that & be

involutive is that for each peM there 1s a cubical coordinate

system centered at p and flat with respe ct to 8.,

PROOF. Since the property of being involutive is local it suffices
to prove the theorem in the case that M 1s Hausdorff. The proof is
given in [1 page 89] for the analytic case and as the proof dopendsy
only on the implicit function theorem and the existence and uniqueness
theorems _for differential equations (which have exact C“ enalogues),

the same proof works in the C® case.

COROLLARY. Let © be an m-dimensional involutive

differentisl system in the n-dimensional differentisble
manifold M . If peM then the set of domains of cubical

coordinate systems centered at p and flat with respect to

@ form a basis of neighborhoods of ‘p with respect to the

manifold topology for M .

PROOF. Let (x; «vo X, O) be a cubical goordinate system centered
at p of breadth 2a. Then for any b < a 1if O’b = {qe G:|xi(q)\ < b}

?
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then (xl P xn, Ob) is a cubical coordinate system centered at p
and flat with respect to @ , and the Ob are a basis of neighborhoods

for p .

THEOREM II. Let: ® be an m-dimensional involutive \
differential system on an n-dimensional differentiable

manifold M . Let (X; +.. X,,U) and (y3 «.. yn,V) be
cubical coordinate systems in M flab with respect to ©

and let peUMNV . Then there ils a diffeomorphism

L2 (G cee ) (L (B 0 eee ty) eee L8 0 ool b))
of & neighborhood of (¥,.,(p) «.c y,(p)) 4n R
& neighborhood of (x,,1(P) +.. x (p)) 1n R*™ gsuch that

Xyegla) = £0(3_ () oov 3,0@)) forall ae O = component
of p in UMV . Moreover if Z 1s the m-dimensional slice

onto

of (xl...xn,ﬂ) defined by (xm;l(p) . xn(p)) and I' is
the m-dimensional slice of (yy --. ¥p,V) defined by

(a2 (P) e 7, (P)) then

¢ : 2R q— (x;(a) «.. x (q)) end
v : 2R q- (33(a) ... yp(a)
are differentiably related m~dimenisional charts in ¥ .

PROOF. Let gy be the exprgssion for x4 in terms of the

coordinate system (-’1 see Jps¥) o Then
N ]

S8ince (x; ... xn,U) and (yl T yn,V) are both flat with respect to
e, ((cl.:r.mﬂ_)q siain (dxn)q) and ((dymwrl)q . (dyn)q) are both bases
for the annihilator of Oq for qeUNV and hence
_('a_sméi.‘('auj)(yl(q) cer Vpla)) =0 for J&m. If O is the image
of under the L '

&4 map q—»(y,(q) Ya(a)) 1t follows that the g .
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are independent of their first m arguments, that is if O 1s the image
of O under the map M : (%) «oe §)—(t fes t,) then there
are differentiable functions f ., ... £, on G such that By =

fag T Them x () =L, (3, 1(a) oo Tplad) for qe " hence

m+i
n-m ,
(A= ,4)p = ji m+1/fau WY1 (P) e yn(p))(dymfj)p end since the
(dx 1)p are linearly independent it follows that

det (’afm,,i/‘auj)(ymﬂ(p) ees ¥u(p)) ¥ 0 . By the implicit functien
theorem the mapping £ : (.3 .o &) _.(rm,,l(tm,l s tn) con T
(tpyy ++s t,)) 18 a locsl diffeomorpbism at (y,.4(p) <.. ¥,(p)) .
In 2:nC we have
. £ (73 (8) eee T4(0)) = £ (3,0 (B) +eu3y(0)) = x4 (P)
8o 2'A0 C 2. Now ¥ 4s an open mepping and 2'nC 1is open
in 2' hence ¥(2)2 ¥(2'n O ) 1s a neighdborhood of ¥(p) . It follows
that ¢(2) is an open sudset of R® . Defining ‘
BBy aee tp) = gelty voo &, 1(p) s Yolp)) en W21 A 0) we have
for qe2'n0 w oela) = x,(q) = By (yy(a) cor Fu(a)) = E1(¥(q)) or

xm+1(Q) =

ug e o .17"1 = Ei. « Since the 3; are clearly differentiable this shows
that @o¢y-l 1s a differentiable map. Similarly ¢(3!) 4is open and
Voe~l 1s a differentiable map so e and ¥ are differentiably
related.

DEFINITION I. Let © be an m-dimensional involutive
differential system on an n-dimensiomal differentiable
menifold (M,¥) and let (x; oo Zp, &) be a cubical
coordinate system for M flat with respect to ©® ., If
Z is any m-dimensional slice of (X3 .. 'Xp, O') the mapping
a— (x;(q) evo xy(q)) of 2 into R® 1s called a 1_ea._r‘o;h_ﬂ:_
for M with respect to © . By theorems I and II the set of
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all leaf charts for M with respect to © form an m-
dimensional differentiable atlas for M .: Let (M,$) be
the m~dimensional differentisble menifold it defines (i.e.

& 1is the complete atlas containing all leaf charts). Then
_(M,8) 1s called the maximum integral manifold of © . A
connected component of M with respect to the manifold
topclogy of (M,®) regarded as an open submanifold of (M,8)
1s celled a leaf of © . We call the set of leaves of‘\é
the follation defined by © and denote it by 4/8 . We

denote by Iig the quotient mapping of M onto M/® which
carries peM onto the leaf of 8 containing p . A subset
'of M 1s called saturated (with respsct to 8) if it is the
union of leaves of © , and if S € M the saturation of S
is . Ngl(ng(S)) . The quotient topology for u/@ is the

strongest topology which makes ne continuous ; equivalently
fts open sets are the images of saturated open sets of M

under ﬂe °

We note that 1t i1s almost immediate from the definition of (M,®)
that (M,#) 4is an m-dimensional integral menifold of © and that any
integral manifold of @ is a submanifold of (M,%) so the name maximum
integral manifold of © {is Justified. It follows that a connected m-
dimensional integral manifold of & (and in particular an m-dimensional
slice of a cubical coordinate system for (M,¥) flat with respect to @)
is an open submanifold of a leaf of © . The fact that (hﬁ,@) is a
submanifold of (M,Y) implies in particular that the manifold topology
for (M,®) 1s stronger than the manifold topology for (M,Y¥) , hence if
(M,¥) 1is a Hausdorff manifold so is (M,®) , however, even in this case

M/® need not be a Hausdorff space in the quotient topology as we shall
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see later by example. R ™

The task we set ourselves is, picturesquely, to !'factor' our n-
dimensional manifold (M,¥) 4into an m-dimensional manifold (M,$)
tparallel’ to © and an n-m dimensional quotient manifold M/0
ttransverse! to 9 . Tﬁe first part of this task, which is classical,
or at least well-imown [1 Chapt. III §VIII]) and [3], bas been ec-
complished above. The second part, namely putting a natwal n-m
dimensional differentiable manifold str;cture on 1/8 cannot always be
accomplished and we invﬁstigate below the condition under which it can.

3. The Continuation Theorem.
THEOREM III. Let © be an involutive m-dimensional .

- differential system on an n-dimensional differentiable

manifold M and let (X7 «.o X5, O) Dbe a cubical coordinate

system centered at p and flat with respect to ©® . Let gq
be a point of the leaf I = Ilg(p) of © containing p. and
(y3 o++ ¥n,U) a cubical coordinate system flat with respect

to © such that q 1s on the m-dimensional slice defined by
(O ese O). Then there is an e > 0 and a diffeomorphism

b o] (tm’]. see tn)""" (fm+1(tm+1 so0 tn) see fn(tmﬂ_ ece tn))
of Tg.= flbpey eee tp)eR*™™ ¢ |t 4} < e} into RO™® such
that for all teT, the m-dimensional slice of (yy «.. ¥,,U)

defined by t and the m-dimensional slice of (x; ... x,,0)

defined by f(t) are parts of the same lbaf of © .

PROOF. Let 2Z' be the set of qeZ for which the conclusion of the
tﬁeorem holds. It follows from Theorem II that peZ' so 2' is not
empty. Since Z .is connected it will suffice ‘to show that 4f q 1is
adherent to 2' in Z then g is Anterior to X' with respect to 2 .
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Let (zl — zn,v) be a cubical coordinate system centered at q and
flat with respect to @ and let W be the m-dimensional slice of

(2y oo 2,,V) defined by (O +.s 0) . Then W '1s a neighborhood of §
in 2 so we can find q'eWN 3! , By definition of Z' we can find a

6 < 0 and functions g ,, ... g, defined on Ty such that

t— g(t) = (gmﬂ.(t) ses g (t)) 1s a diffeomorphism and for teTy the
m-dimensional slice of (2 ... z,,V) defined by ¢ and the m-
dimensional slice of (Xy «e. Xp, O) defined by g(t) are parts of the
geme leaf.of © . Let 'qew\ and let (yl sss JnsU) be a cubical co-
ordinate system flat with respect to @ containing q in its
m-dimensional Qlioe defined by (0 ... 0). By theorem II there are
functions Boyg oo h, defined in a neighborhood of the origin in go-n
such that zm_i(r) =h g (Tpe1(T) oo Fo(r)) for r in an M neighbor-
hood of q and moreover 1f e 1is chosen sufficiently small

t = h(t) = (hy, (%) +eo hy(t)) 1is & diffeomorphism of T, into Ty .
Define £ on T, by f=geh . Then f being the composition of two
diffeomorphisms 1s a diffeomorphism. Moreover if teT then the m-
dimensional slice of (X +.. X, 0) defined by f£(t) = g(h(t)) is part
of the same leaf of @ as the m-dimensional slice of (24 o0s 2,,V)
defined by h(t) which in turn is a part of the same leaf of @ as the
m-dimensional slice of (yl ese yn,U) defined by t . This verifies that
qeZ' and hence that WS Z' . Since W is a neighdorhood of § in 2 ,
q is interior to 2¢ with respect to I ’as was to be shown. |

DEFINITION II. Let (X +.s X,,0) be a cubical coordinate
system of breadth 2a in a differentiable menifold M which is
flat with respect to an m-dimensional involutive differential
system € . 4 coordinate system (11 eee YpsU) in M is
sald to be subordinate to (xl — xn,O) ¥ith respeet to ©
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if 1t is flat with respect to @ , cubical of breadth 2b<2a ,
and if \t,,q4|<b 1 =1 ... n-m implies that the m-dimensiocnal
slices of (xl ese x'nyo) and (yl eve In,U) defined by

(bpey oo tn) are parts of the same leaf of @ .

COROLLARY 1. Let (X3 «.. Xy, 0) le_ a cubical coordinate

system centered at p on the differentiable mamifold M which

is flat with respect to an involutive differential system @ .

If qellg(p) then there is a coepdinate system centered at gq
and subordinate to (X; ... X,,0) with respect to @ .

PROOF. Let (yl oo yn,U) be any cubical coordinate system centered
at q and flat with respect to © . Then, letting fm+l eee £, be the
functions given by the theorem, define functions 2, ... z, near q by
3, =Ty 1=2.om 25,4 =L 4(Fpe 200 Tp) 1 =1 ccon-m. Then if W
is a suitably chosen nelghborhood of g (zl eeo 2,,W) 1s centered at gq
and is subordinate to (:l:l cos Xps o) .

COROLLARY 2. If © 1is an involutive differential system

on a difrer;ntiable manifold M then Iy 1s an open mapping
of M onto M/@ with respect to the quotient topology for

M/6 . Equivalently the saturation of an open set of M with

respect t_g_ @ 1is open.

»

PROOF. The equivalence of the two statements 1s clear. Let C be
an open set of M and let q be in the saturation G of O . Let P
be a point of O belonging to the same leaf of ® as g . Let
(Xq oo X,:U) Dbe a cubleal coordinate system centered at p and flat
with respect to @ with UEO (ses corollary of theorem I). By
corollary I we can find a coordinate system (yl vse yn,V) centered at q

and subordinate to (Xy «.. X,,U) with respect to 8 . If q'eV then
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q' belongs te the same leaf of © as does the m-dimensional slice of
(xy «e. x,,U) defined by (ym+1(q') see Yp(a')) , 8o in particular qf
1s in the saturation of U and hence of (O . Thus V& & so, as V
is a neighborhood of q , q is interior to 5 « Hence 5 is open.

Now in general if I1 is a mapping of a topological space X
onto a'sat Y there 1s clearly at most one topology for ¥ such that

I1 is both continuous and open. Hence: ¥

COROLLARY 3. If © 1is an involutive differential system
on a differentiable manifold M then the guotient topology for

¥/® 1is uniquely characterized by the conditions that with respect

Yo it Dy 1s continuous and open.

o Regularity.

DEFINITION III. Let @ be an involutive m~dimensional
differential system on an n-dimensional differentiable memnifold
M . A coordinate system (xy ... x;, ) in M will be called
regular with respect to © if it is euﬁical, flat with respect

to © , and if each leaf of @ intersects O in at most one
m-dimensional siice of (xy .. x,, 0) « A leaf of © will be
called a regular leaf of 6 if it intersects the domain of a
toordinate aystem regular with respect to ©.. We call @
reguiar if every leaf of © 1s a regular leaf of © .

THEOREM IV. If © 1is an involutive differentisl system

on a differentiable manifold M and (x; ... x,,0) 1is e
goordinate system in M regular with respect to © then any

coordinate system in M subordinate to (x) oo X, 0) with
respect to @ 1s also regular with respect to 6 .
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