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Simulation Monographs

Simulation Monographs is a series on
computer simulation in agriculture and
its supporting sciences



PREFACE

This book is an introduction to dynamic simulation of plant growth and crop
production. It summarizes a good deal of the experience in modelling an pro-
gramming of this subject that has been accumulated in Wageningen, the
Netherlands, in the last decade. It concerns in particular the disciplines of crop
physiology, crop micrometeorology, soil physics and soil microbiology. The ex-
perience results from research done at the Department of Theoretical Produc-
tion Ecology of the Agricultural University and its teaching programmes, from
research at the Centre for Agrobiological Research and at other departments
and institutes, and from the work of visiting scientists. Much of this technical
experiences and know-how is presented in the Chapters 2 to 6 in this book. We
have tried to make it accessible to readers by means of many exercises and
examples.

The systems approach applied to a wide range of subjects has led to a par-
ticular view of simulation and modelling of plant growth and of crop produc-
tion. This view has been translated into a practical approach. Both view and ap-
proach are the subject of the introductory contributions in Chapter 1 of this
Monograph.

The motive to publish this Simulation Monograph was an advanced inter-
national course on the same topic, held in Wageningen in the spring of 1981. It
was organized by Dr van der Kloes of the Foundation of Post Graduate courses
of the Agricultural University in Wageningen. The 15 lectures of this course
have been moulded into this book with the full cooperation of the authors.

During the editing of this Monograph, Ir Drees has been particularly helpful
in developing exercises and formulating their answers. For the skillful typing of
the manuscript and drawing of the figures Mr van Amersfoort and Mr Beekhof
are kindly acknowledged.

F.W.T. Penning de Vries
H.H. van Laar
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1.1 Simulation of living systems

C.T. de Wit

1.1.1 Systems, models and simulation

System analysis and simulation has been used by engineers for more than 30
years. Their successes inspired biologists and agronomists to apply similar tech-
niques in their disciplines. The approach is characterized by the terms: systems,
models and simulation. A system is a limited part of reality that contains inter-
related elements, a model is a simplified representation of a system and simula-
tion may be defined as the art of building mathematical models and the study of
their properties in reference to those of the systems.

Although any model should have definite goals, be lucid and achieve its
objective, in practice it seems that goals are too often described in such broad
terms that sufficient lucidity is reached only for the initiated, and that the mod-
els achieve less than expected by the biologist. For these reasons the word ‘art’
rather than ‘science’ is used in the definition of simulation.

It follows from the definition that a model is a system, but the reverse may
also be true. A work of art is a simplified representation or a model of the vision
of the artist. A machine is a model of the conception of the engineer and it cer-
tainly performs worse than anticipated. And when an engineer applies simula-
tion, he develops simulation models that lie in between his conception and reali-
ty. The ultimate machine is in fact a model of his simulation model, which in its
turn is a simplified representation of his mental conception.

Although some wish it otherwise, biological systems are not simplified repre-
sentations of the conception of the biologist, and the interchange of the terms
models and systems does not make any sense. Therefore, it may be that the
approach that has been so successful in engineering is not as useful in biology.
Fools rush in where wise men fear to tread. Much of this rushing in simulation
in biology is done by agronomists, perhaps because they are fools, but maybe
because they deal with systems in which the technical aspects overrule more and
more the biological aspects.

As has been said, a system is a limited part of reality, so that a border has to
be chosen. It is wise to make this choice so that the system is isolated from its
environment. This is almost always impossible, but then it should be attempted
to choose a border so that the environment may influence the system, but the
system affects the environment as little as possible. To achieve this, it may be
necessary to choose a system that is larger than necessary for the original purpose.

In agricultural systems, for instance, the microclimate is often part of the
system, but everybody happily neglects the influence of the agricultural system
on the macroclimate, even though this is not correct. However, the assumption
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that everything is related to everything is sure to kill all research.
1.1.2 Explanatory models

A file with data on an ecosystem may be called a model, but it is a model
without purpose and lucidity. Potential uses of the data may be formulated and
then lucidity may be introduced by a treatment of the data. This may result in
maps that represent aspects of the ecosystem, or in statistical analyses, which
summarize some of the interrelations. Dynamic models are obtained if the time
dimension is introduced during the collection and treatment of the data. But
those models remain descriptive, showing the existence of relations between ele-
ments without any explanation, but, of course, this was not their purpose to
begin with.

However, models that have the purpose of explaining systems are possible in
biology because various levels of organization are distinguished in this science,
as many other natural sciences. These different levels of organization may be
classified, according to the size of the system, as those of molecules, cell struc-
tures, cells, tissues, organs, individuals, populations and ecosystems. Models
that are made with the objective of explaining are bridges between levels of or-
ganization; they allow the understanding of larger systems on the basis of the
knowledge gained by experimentation on smaller systems. In this way the prop-
erties of membranes may be understood better by studying molecules and the
properties of ecosystems by studying species.

If the knowledge on the level which is used for explanation is sufficiently
detailed and complete, and on the basis of this a model of the system which be-
haviour has to be explained is designed, it may not be necessary to evaluate the
model by comparing its results with those of the real system. For example,
models for space travel are so good that the ‘proof of the pudding’ — the jour-
ney itself — is unnecessary. But explanatory models in biology are so rudi-
mentary that proof of their usefulness is necessary. And even when there is good
agreement, there is room for doubt. However, good agreement is still more the
exception than the rule.

If there are discrepancies between model and real system, the model may be
adjusted to obtain better agreement. Then, something that started as an explan-
atory model degenerates progressively into a descriptive model. The term ‘de-
generation’ in this context does not mean that descriptive models are inferior to
explanatory models. It is used here to emphasize that in this way inscrutable
models are obtained with an unjustified pretention to explain something. It is
for this reason that many models are still doing more harm than good.

The proper way of working is heuristic, by the road of gradual improvement.
If unacceptable discrepancies between model and system are observed it may be
possible to judge which aspects of the model should be treated with suspicion,
by experimenting with both. These aspects are then studied on the level that is
used for explanation. On basis of this renewed study, elements of the model
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may be replaced by others and then a renewed confrontation between the results
of the model and the real system may be again useful.

Explanatory models may be of the static or dynamic kind. An example of a
static model is a model that contains all the necessary calculations to achieve the
relation between respiration and growth on basis of the knowledge of the under-
lying biochemical processes. Another example is a model that is used to cal-
culate the light distribution over leaves based on canopy architecture, leaf prop-
erties, solar position and so on. Such static models form often a part of dynamic
models.

It is characteristic for all systems discussed in this book that major elements
(like plant biomass) change only gradually in amount with time or in space in
response to changing external factors such as weather or fertilization. Such
systems are called ‘continuous’, in contrast to ‘discrete’ systems (cf. Brocking-
ton, 1979), which deal with numbers and discontinuities in time.

1.1.3 The state-variable approach

For dynamic models that claim to be of the explanatory type, the state-variable
approach is gaining wide acceptance. These models are based on the assumption
that the state of each system at any moment can be quantified, and that changes
in the state can be described by mathematical equations. This leads to models in
which state, rate, and driving variables are distinguished.

State variables are quantities like biomass, number for a species, the amount
of nitrogen in soil, plant or animal, the water content of the soil. Roughly, those
variables that can still be measured when time stands still as in the fairy world of
the Sleeping Beauty, are state variables.

Driving variables, or forcing functions, characterize the effect of the environ-
ment on the system at its boundaries, and their value must be monitored contin-
uously. Examples are macrometeorological variables like rain, wind, tempera-
ture and irradiation, but also the food supply or migration of animals over the
boundaries of the system. It depends on the position of these boundaries whether
the same variables are driving, state or rate variables. For instance, the heat
stored within a vegetation canopy is a state variable when the system includes
micrometeorological aspects, but a driving variable that has to be measured
when the micrometeorological aspects are excluded from the system.

Each state variable is associated with rate variables that characterize their rate
of change at a certain instant as a result of specific processes. These variables
represent flows of material or energy between state variables, for example,
between vegetative biomass and grazing animals. Their values depend on the
state and driving variables according to rules that are based on knowledge of the
physical, chemical and biological processes that take place, and not on a sta-
tistical analysis of the behaviour of the system that is being studied. This is the
most important distinction between models that describe and models that at-
tempt to explain.



