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At the suggestion of Professor Sobrero of
CISM, I organized a series of lectures to be presented
by me and several colleagues at Dubrovnik in September
1971, under the joint auspice of CISM and the Universi-
ty of Zagreb. For his encouragement and support, I wish
to immediately express my thanks.

The lectures were organized in two series,
and three hours of lectures were presented in each ser-
ies each day during 13 - 17 September. This book con-
tains the lectures of the second series, given by Under-
signed, by Professor P.W. Likins, and by Dr. W. Witten-
burg. Each series was devoted to one aspect of special
current importance relating to the rotational behaviour
of spacecraft.

The subject of this second series was the dy-
namiceg of flexible rotating spacecraft. This is a topiec
of considerable current interest to rotational dynamics
as a science, as well as to its technological applica-
tionm area of rotating spacecraft. We have attempted to
describe here the two majof approaches to the problem:
first, the approach through linearly elastic dynamical
equations, generalized from the traditional structural
dynamical equations by referénce to rotating bases; sec
ond, the approach through the dynamics of a discrete

set of interconnected, individually rigid bodies. Each
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has its own domain of applicability.
Professor Likins prepared and presented
Lectures 1 - 9; Dr. Wittemburg, Lectures 11 and 14,

and I the remaining lectures.

Udine,September 1971

Peter W. Likins
Robert E. Roberson

Jens Wittenburg



Introductory remarks
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As I have remarked previously, spacecraft problems
have been responsible for a resurgence and growth of the dynamic
al theory of rotating systems. For many purposes during the last
two decades it has been possible to model the spacecraft asarig
id bodies or gyrostats, or perhaps simple two-body systems., How-
ever, even from the earliest days of real satellites, cases have
been known where non-rigid characteristics have dominated the dy
namical behavior,

Within the last few years, elastic deformations
have become of increasingly great importance in both spin-stabi-
lized and passively stabilized systems, because the elastic be-
havior can be central to the stability of the desired state of
motion, Furthermore, even in actively controlled systems elastic
behavior has become increasingly important as the size of the pro-
posed structures increases and the accuracy of pointing control
becomes greater for certain applications.

We no longer can afford to focus solely on therig
id body aspects of spacecraft rotation, but must begin to consid
er its elastic behavior as well, The resulting class of problems
lie at an interesting triple point between classical rigid body

dynamics, the theory of structures, and control theory, present-
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ing new facets to the disciplines now familiar in each of
these fields.

This lecture series is intended to convey some of
the flavor of this relatively new aspect of spacecraft dynamics.
It is not a definitive treatment, for such is not yet possible.
The field is growing and changing, and currently represents afore
front research, It is felt, nevertheless, that the material pre
sented here is a sound foundation on the basis of which the lis

tener can further develop his own interests.

1. (¥*)Mathematical modeling of spacecraft

A lecture series devoted to the Dynamics of Flex
ible Spacecraft is concerned not with a single problem but with
a family of related problems. Accordingly, there is not a single
correct approach to solution, but a spectrum of methods to beap
plied to a family of spacecraft idealizations. Although analysts
will differ in their preference for various ways of formulating
equations, one man choosing Lagrange's equations, a second pre-
ferring Hamilton's princirle, and a third relying upon a Newton-

Euler formulation, these differences are much less fundamental

(*) Lectures 1 through 9 by Likins are based largely on work
sponsored by NASA, through either the Jet Propulsion Labora-
tory or Marshall Space Flight Center. Nomenclature for these
lectures is listed following section 9, commencing on page 93.
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than the initial choice of a mathematical model of the vehicle,
The spacecraft mathematical model consists first-
ly of an idealization and mathematical description of the physi-
cal system (this we might call the mechanical model), and second
ly of a mathematical statement of the motions which can be expe-
rienced by the idealized spacecraft (this then becomes the kine-
matical model). A representative list of options to be consider-
ed in each of these modeling decisions might be drawn up as fol-
lows:
A. Mechanical models
(a) Rigid body
(b) Elastic or viscoelastic continuum
(c) Collection of elastic elements ("finite ele-
ments") interconnected at nodal rigid bodies
or particles
(d) Collection of interconnected substructures,

each of which is modeled as in a), b), or c).

B. Kinematical models
(a) Unrestricted coordinates of the mechanical
model
(b) Coordinates restricted to allow only "small"
deformations
(c) Coordinates partially prescribed by interpo-

lation functions
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(d) Combinations of a), b), and c).

Although mechanical model Aa), the rigid body,
has served to represent most early spacecraft after launch, and
mechanical model Ab), the elastic continuum, has proven useful
in the representation of launch vehicles modeled as elastic beams,
still these basic models must be said to have quite limited util
ity in application to modern space vehicles. Model Ac) is appro-
priate for any spacecraft which may be idealized as linearly e-
lastic and subject to small deformations, but this is still in a
modern context quite a restricted class of vehicles. In most cur
rent applications one must resort to model Ad), which involves
the subdivision of a spacecraft into a collection of substruc-
tures, and independent idealization of the individual substruc-
tures, In this fashion one might accomodate an actively control-
led scanning antenna of great flexibility mounted on a spacecraft
frame which is itself essentially rigid, or one might connect two
or more rigid bodies or two or more elastic bodies., The combina-
tions are many and varied, as are the vehicles to be analyzed,

In order to develop a rationale for adopting a
particular idealized mechanical model, one must give some thought
to the anticipated kinematical model, A rigid body (model Aa))
is, of course, fully characterized in its motions by six scalar
coordinates, and six second-order (or twelve first order) ordina

ry differential equations will always suffice to predict its mo-
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tions., The number of independent coordinates increases for a col
lection of rigid bodies in a manner established by the constraints
among the bodies, being always no greater than 6n ., In working
with such systems, it is customary to deal with some collection
of scalar coordinates each of which describes a kinematical pro-
perty of a particular rigid body of the system, Such coordinates
may be characterized as discrete, in contrast to the distributed
coordinates to be described next,

A continuum (model Ab) must be characterized kine
matically not by scalar coordinates depending only on time, but
by scalar functions of space and time; the equations of motion
must be partial differential equations. Even for the simplest con
tinuous model of a spacecraft (e.g., a uniform elastic beam), one
normally finds it advantageous to replace the partial differen-
tial equation by a large but finite number of ordinary differen-
tial equations, expressed in terms of coordinates each of which
describes a motion or deformation in which the entire vehicle (or

substructure) participates; these are called distributed coordi-

nates, The substitution of a finite number of ordinary differen-
tial equations for a partial equation evidently involves an ap-
proximation, since the continuous system originally postulated
could be described kinematically only by an infinite number of
scalar coordinates varying only with‘time. In the simplest case
(esg., a uniform elastic beam vibrating freely about a state of

rest in inertial space), the transition from partial to ordinary
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differential equations is accomplished formally by representing
the solution to the unknown function in the partial differential
equation as a product of two functions, one of which depends on
ly on spatial coordinates and the other only on time., The latter
then provides the unknowns in the ordinary differential equations,
while the former provides a shape function which describes the
spatial distribution of motion (or deformation) for a unitvalue
of the latter., The expeditious decision to work with a finite
number of distributed coordinates is then implemented by simply
truncating the infinity of coordinates formally obtained and e-
lecting to proceed with a smaller number judged to be represent-
ative of the salient features of the system dynamics. This isnot
a rigorous step mathematically, but it need not be inconsistent
with the level of validity of the mathematical model originally
adopted for the spacecraft (no real space vehicle is a uniform,
homogeneous, isotropic, elastic beam).

In most realistic situations, it is impractical
to begin with a partial differentail equation of motion for a
material continuum model of a space vehicle, and alternatives
must be found.

It is a common practice among those attempting to
use a continuous model of a spacecraft or complex spacecraft com-—
ponent to avoid the partial differential equation from the out-
set, relying upon an initial formulation in terms of a finite

number of distributed coordinates which the analyst judges to be
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adequate to represent all dynamically significant structural de-
formations. Note that when one adopts this practice he begins
with a continuous mechanical model but immediately imposes a ki-
nematical model which restricts the number of degrees of freedom
of the system, It then becomes equivalent to the adoption in the
first place of a mechanical model having a limited number of de-
grees of freedom, as in model Ac).

Probably the mechanical model most commonly adopt
ed for the representation of a complex flexible substructure of
a spacecraft is model Ac), which idealizes an elastic body as a
collection of nodal bodies (either particles or rigid bodies) in

terconnected by elastic members, often called finite elements.

The deformable finite elements may be massless, or mass may be
distributed throughout each deformable element; in the latter
case the nodal bodies might be massless.

Since small deformation theory is generally employ
ed in analyzing the deformations of the elastic elements in mech
anical model Ac), one must generally sacrifice the generality of
the unrestricted coordinates in kinematical model Ba), If the fi
nite elements have been idealized as massless, then kinematical
model Bb) is appropriate, so that nodal bodies of a given sub-
structure are permitted to experience only small relative motions
(perhaps in conjunction with large common motions in inertial
space), If the continuous finite elements are idealized as having

distributed mass, then the mechanical model again has an infinite
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number of degrees of freedom., The number of coordinates is re-
duced by employing kinematical model Bc), for which interpolation
functions are introduced to provide the deformations within a fi
nite element explicitly in terms of the relative motions of the
nodal bodies.

It is not possible to consider in intelligible de
tail within the limits of this lecture series the dynamic analy-
sis of each of the mathematical models listed, although the en-
gineer responsible for spacecraft analysis really should have
some knowledge of the advantages of each., Rather than provide a
superficial survey of all potentially valuable procedures, we
have elected to examine in depth a limited number of approaches.
Specifically, we shall explore initially the formulation of equa
tions of motion of a flexible substructure modeled as intercon-
nected nodal bodies as in Ac), when attached to spacecraft com-
ponents modeled as rigid bodies as in Aa); this combination will
involve a combination of discrete and distributed coordinates,

so it is called a hybrid coordinate formulation,(¥*) After deriv-

ing the appropriate equations for this special case (and indicat
ing briefly how one might approach the more general case involv-
ing the coupling of flexible substructures), we shall explore

some of the results recently obtained by means of hybrid coordi-

nate analysis, The second half of our lecture series will deal

(*) The material immediately following is drawn from Ref. 18 of
the Bibliography.
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with the formulation and use of equations of motion of mathemat-
ical models consisting of collections of interconnected rigid

bodies.

2. Appendage idealization

Any portion of a vehicle which can reasonably be
idealized as linearly elastic and for which "small" oscillatory
deformations may be anticipated (perhaps in combination with large

steady-state deformations) is called a flexible appendage.

A flexible appendage is idealized as a finite col
lection of & numbered structural elements, with element number s
having ng points of contact in common with neighboring elements
or a supporting rigid body, s=1,...,&¢ . Each contact point is cal
led a node, and at each of the n nodes there may be located the
mass center of a rigid body (called a nodal body), but the elas-
tic structural elements may also have distributed mass.

Figure 1 is a schematic representation of an ap-
pendage (enclosed by dashed lines) attached to a rigid body b of
a spacecraft, which may consist of several interconnected rigid
bodies and flexible appendages. A typical four-node element of
the appendage is shown in three configurations of interest: i)
prior to structural deformation, ii) subsequent to steady-state

deformation, induced perhaps by spin, and iii) in an excited state,
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experiencing both oscillatory deformations and steady state de-
formations,

The point Q of body b is selected as an appendage
attachment point. The dextral, orthogonal unit vectorsb,, b, ,
bz are fixed relative to b , and the dextral, orthogonal unit
vectors 3, ,8, ;33 are so defined that the flexible appendage un
dergoes structural deformations relative to a reference frame o
established by point Q and vectors a;,a;,as . Oross changes in
the relative orientation of a and b are permitted, in order to

accomodate scanning antennas and such devices; this is accomplish
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ed by introducing the time-varying direction cosine matrix C re-

lating a,, to Q“(oc=1,2,3) by

ajy Ciyy Cyp Cyz|(by
Q¢ = [Ca4 Cpa Cp3z|iby (1)
asz €3y C3p Cazjlbs

or, in more compact notation, by

{a} = c{p}. (2)

The equations of motion to follow permit arbitrary motion of b
and arbitrary time variation in C , although practical applica-
tion of the results requires that the inertial angular veloci-
ties of @ and b remain in the neighborhood of conStant values
over some time interval., These angular velocities will not emerge
as solutions of equations to be derived here; the complete dynam
ic simulation must involve equations of motion of the total vehi
cle and each of its subsystems, as well as differential equations
characterizing necessary control laws for automatic control sys-
tems, and only the differential equations of appendage deforma-
tions are to be developed here.

As shown in Fig. 1, appendage deformations are de
scribed in terms of two increments, one steady-state and the oth
er oscillatory. This separation is'nécessary because in formulat
ing the equations of motion for the small oscillatory.deformations

of primary interest here one must characterize the elastic pro-



16 2. Appendage Idealization

perties of the appendage with a stiffness matrix, and the ele-
ments of this matrix are influenced by the structural preload
associated with steady-state deformations, as induced for exam-
ple by spin.

The j“” nodal body experiences due to steady-state
structural deformation the translation w" =w* a, (summation con
ventlon) of its mass center, and a rotation characterized byﬁi,
f32 v ]33 , for sequential rotations about axes parallel to a; ,
as , 33z , The steady-state deformations of a typical element
are represented by the function w', which is related to the cor-
responding nodal deformation by the procedures of finite element
analysis, The task of solving for the steady-state deformations
of appendages on a vehicle with constant angular velocity ismath
ematically identical to a static deflection problem. Because, at
least formally, large deflections and resulting nonlinearities
are to be accomodated, this task is not trivial, but it is in
this paper assumed accomplished, so that steady-state deforma-—
tions and structural loads associated with nominal vehicle rota-
tion are assumed known.,

Attention is to focus here on the small, time-va-
rying deformations of appendages induced by transient loads or
deviations from nominal vehicle motion, The j.th nodal body expe-
riences the translation L_J.}=u.i§“ and the rotation ﬁ}= j&igu
(small angle approximation) in addition to the previously describ-

ed steady-state deformations., The oscillatory part of the deforma



