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UNIT CONVERSION

This book employs SI units. However, other units are sometimes preferable. Some
conversion factors are listed below.

Length

I Angstrom (A) = 10" meter

1 foot = 0.305 meter

1 light year = 9.46 X 10" meters
| parsec = 3.26 light years

Volume
1 liter = 1000 centimeter® = 10 * meter?
1 U.S. gallon = 0.83 imperial gallon = 3.78 liters

Time

1 hour = 3600 scconds

1 day = 8.64 x 10" seconds
| hertz (hz) = 1 second '

Mass
1 atomic mass unit (amu) = 1.6605 x 10~ " kilogram

Force
I pound (Ib) = 4.45 newtons

Energy and Power

l erg=10 " joule

1 kcal = 1 Cal = 1000 cal = 4.184 X 10" joules
1 electron volt (eV) =1.602x 10" joule

1 foot-pound = 1.36 joules

1 horsepower = 746 watts

Pressure )
I atmosphere = 1.013 bar = 1.013 X 10" newtons/meter = 14.7 pounds /inch” = 760 torr
I pascal = 1 newton /meter”

Temperature

x°C=(273.16 +x)K
x°F =5(x — 32)/9°C
1 eV =k,x11,605K
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PREFACE

TO THE STUDENT

Up to this point in your career you have been asked to use mathematics to solve
rather elementary problems in the physical sciences. However, when you graduate
and become a working scientist or engineer you will often be confronted with
complex real-world problems. Understanding the material in this book is a first
step toward developing the mathematical tools that you will need to solve such
problems.

Much of the work detailed in the following chapters requires standard pencil-
and-paper (i.e., analytical) methods. These methods include solution techniques
for the partial differential equations of mathematical physics such as Poisson’s
equation, the wave equation, and Schrodinger’s equation, Fourier series and
transforms, and elementary probability theory and statistical methods. These
methods are taught from the standpoint of a working scientist, not a mathemati-
cian. This means that in many cases, important theorems will be stated, not proved
(although the ideas behind the proofs will usually be discussed). Physical intuition
will be called upon more often than mathematical rigor.

Mastery of analytical techniques has always been and probably always will be of
fundamental importance to a student’s scientific education. However, of increasing
importance in today’s world are numerical methods. The numerical methods
taught in this book will allow you to solve problems that cannot be solved
analytically, and will also allow you to inspect the solutions to your problems using
plots, animations, and even sounds, gaining intuition that is sometimes difficult to
extract from dry algebra.

In an attempt to present these numerical methods in the most straightforward
manner possible, this book employs the software package Mathematica. There are
many other computational environments that we could have used instead—for
example, software packages such as Matlab or Maple have similar graphical and
numerical capabilities to Mathematica. Once the principles of one such package
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are learned, it is relatively easy to master the other packages. I chose Mathematica
for this book because, in my opinion, it is the most flexible and sophisticated of
such packages.

Another approach to learning numerical methods might be to write your own
programs from scratch, using a language such as C or Fortran. This is an excellent
way to learn the elements of numerical analysis, and eventually in your scientific
careers you will probably be required to program in one or another of these
languages. However, Mathematica provides us with a computational environment
where it is much easier to quickly learn the ideas behind the various numerical
methods, without the additional baggage of learning an operating system, mathe-
matical and graphical libraries, or the complexities of the computer language itself.

An important feature of Mathematica is its ability to perform analytical calcula-
tions, such as the analytical solution of linear and nonlinear equations, integrals
and derivatives, and Fourier transforms. You will find that these features can help
to free you from the tedium of performing complicated algebra by hand, just as
your calculator has freed you from having to do long division.

However, as with everything else in life, using Mathematica presents us with
certain trade-offs. For instance, in part because it has been developed to provide a
straightforward interface to the user, Mathematica is not suited for truly large-scale
computations such as large molecular dynamics simulations with 1000 particles
or more, or inversions of 100,000-by-100,000 matrices, for example. Such appli-
cations require a stripped-down precompiled code, running on a mainframe
computer. Nevertheless, for the sort of introductory numerical problems covered
in this book, the speed of Mathematica on a PC platform is more than sufficient.
Once these numerical techniques have been learned using Mathematica, it
should be relatively easy to transfer your new skills to a mainframe computing
environment.

I should note here that this limitation does not affect the usefulness of
Mathematica in the solution of the sort of small to intermediate-scale problems
that working scientists often confront from day to day. In my own experience,
hardly a day goes by when I do not fire up Mathematica to evaluate an integral or
plot a function. For more than a decade now I have found this program to be truly
useful, and I hope and expect that you will as well. (No, I am not receiving any
kickbacks from Stephen Wolfram!)

There is another limitation to Mathematica. You will find that although Mathe-
matica knows a lot of tricks, it is still a dumb program in the sense that it requires
precise input from the user. A missing bracket or semicolon often will result in
long paroxysms of error statements and less often will result in a dangerous lack of
error messages and a subsequent incorrect answer. It is still true for this (or for any
other software) package that garbage in = garbage out. Science fiction movies
involving intelligent computers aside, this aphorism will probably hold for the
foreseeable future. This means that, at least at first, you will spend a good fraction
of your time cursing the computer screen. My advice is to get used to it—this is a
process that you will go through over and over again as you use computers in your
career. I guarantee that you will find it very satisfying when, after a long debugging
session, you finally get the output you wanted. Eventually, with practice, you will
become Mathematica masters.
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I developed this book from course notes for two junior-level classes in mathe-
matical methods that I have taught at UCSD for several years. The book is
oriented toward students in the physical sciences and in engineering, at either the
advanced undergraduate (junior or senior) or graduate level. It assumes an
understanding of introductory calculus and ordinary differential equations. Chap-
ters 1-8 also require a basic working knowledge of Mathematica. Chapter 9,
included only in electronic form on the CD that accompanies this book, presents
an introduction to the software’s capabilities. I recommend that Mathematica
novices read this chapter first, and do the exercises.

Some of the material in the book is rather advanced, and will be of more
interest to graduate students or professionals. This material can obviously be
skipped when the book is used in an undergraduate course. In order to reduce
printing costs, four advanced topics appear only in the electronic chapters on the
CD: Section 5.3 on wave action; Section 6.3 on numerically determined eigen-
modes; Section 7.3 on the particle-in-cell method; and Section 8.3 on the
Rosenbluth—Teller—Metropolis Monte Carlo method. These extra sections are
highlighted in red in the electronic version.

Aside from these differences, the text and equations in the electronic and
printed versions are, in theory, identical. However, I take sole responsibility for any
inadvertent discrepancies, as the good people at Wiley were not involved in
typesetting the electronic textbook.

The electronic version of this book has several features that are not available in
printed textbooks:

1. Hyperlinks. There are hyperlinks in the text that can be used to view
material from the web. Also, when the text refers to an equation, the
equation number itself is a hyperlink that will take you to that equation.
Furthermore, all items in the index and contents are linked to the corre-
sponding material in the book, (For these features to work properly, all
chapters must be located in the same directory on your computer.) You can
return to the original reference using the Go Back command, located in the
main menu under Find.

2. Mathematica Code. Certain portions of the book are Mathematica calcula-
tions that you can use to graph functions, solve differential equations, etc.
These calculations can be modified at the reader’s pleasure, and run in situ.

3. Animations and Interactive 3D Renderings. Some of the displayed figures are
interactive three-dimensional renderings of curves or surfaces, which can be
viewed from different angles using the mouse. An example is Fig. 1.13, the
strange attractor for the Lorenz system. Also, some of the other figures are
actually animations. Creating animations and interactive 3D plots is covered
in Sections 9.6.7 and 9.6.6, respectively.

4. Searchable text. Using the commands in the Find menu, you can search
through the text for words or phrases.

Equations or text may sometimes be typeset in a font that is too small to be read
easily at the current magnification. You can increase (or decrease) the magnifica-
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tion of the notebook under the Format entry of the main menu (choose Magni fi-
cation), or by choosing a magnification setting from the small window at the
bottom left side of the notebook.

A number of individuals made important contributions to this project: Professor
Tom O’Neil, who originally suggested that the electronic version should be written
in Mathematica notebook format; Professor C. Fred Driscoll, who invented some
of the problems on sound and hearing; Jo Ann Christina, who helped with the
proofreading and indexing; and Dr. Jay Albert, who actually waded through the
entire manuscript, found many errors and typos, and helped clear up fuzzy
thinking in several places. Finally, to the many students who have passed through
my computational physics classes here at UCSD: You have been subjected to two
experiments—a Mathematica-based course that combines analytical and computa-
tional methods; and a book that allows the reader to interactively explore varia-
tions in the examples. Although you were beset by many vicissitudes (crashing
computers, balky code, debugging sessions stretching into the wee hours) your
interest, energy, and good humor were unflagging (for the most part!) and a
constant source of inspiration. Thank you.

DANIEL DUBIN

La Jolla, California
March, 2003



CHAPTER 1

ORDINARY DIFFERENTIAL EQUATIONS
IN THE PHYSICAL SCIENCES

1.1 INTRODUCTION

1.1.1 Definitions

Differential Equations, Unknown Functions, and Initial Conditions Three
centuries ago, the great British mathematician, scientist, and curmudgeon Sir Isaac
Newton and the German mathematician Gottfried von Liebniz independently
introduced the world to calculus, and in so doing ushered in the modern scientific
era. It has since been established in countless experiments that natural phenomena
of all kinds can be described, often in exquisite detail, by the solutions to
differential equations.

Differential equations involve derivatives of an unknown function or functions,
whose form we try to determine through solution of the equations. For example,
consider the motion (in one dimension) of a point particle of mass m under the
action of a prescribed time-dependent force F(¢). The particle’s velocity u(t)
satisfies Newton’s second law

dv
m-— =F(t). (1.1.1)
This is a differential equation for the unknown function v(¢).

Equation (1.1.1) is probably the simplest differential equation that one can write
down. It can be solved by applying the fundamental theorem of calculus: for any
function f(z) whose derivative exists and is integrable on the interval [a, b],

ab%dt=f(b) — f(a). (1.1.2)
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Integrating both sides of Eq. (1.1.1) from an initial time ¢ =0 to time ¢ and using
Eq. (1.1.2) yields

Ul%dt=v(t)—u(0)=%f01F(t)dt. (1.13)

Therefore, the solution of Eq. (1.1.1) for the velocity at time ¢ is given by the
integral over time of the force, a known function, and an initial condition, the
velocity at time ¢ = 0. This initial condition can be thought of mathematically as a
constant of integration that appears when the integral is applied to Eq. (1.1.1).
Physically, the requirement that we need to know the initial velocity in order to
find the velocity at later times is intuitively obvious. However, it also implies that
the differential equation (1.1.1) by itself is not enough to completely determine a
solution for wo(¢); the initial velocity must also be provided. This is a general
feature of differential equations:

Extra conditions beyond the equation itself must be supplied in order to
completely determine a solution of a differential equation.

If the initial condition is not known, so that v(0) is an undetermined constant in
Eq. (1.1.3), then we call Eq. (1.1.3) a general solution to the differential equation,
because different choices of the undetermined constant allow the solution to
satisfy different initial conditions.

As a second example of a differential equation, let’s now assume that the force
in Eq. (1.1.1) depends on the position x(¢) of the particle according to Hooke’s
law:

F(t) = —kx(t), (1.1.4)

where k is a constant (the spring constant). Then, using the definition of velocity
as the rate of change of position,

Eq. (1.1.1) becomes a differential equation for the unknown function x(z):

d’x k
o (1.1.6)

This familiar differential equation, the harmonic oscillator equation, has a
general solution in terms of the trigonometric functions sin x and cos x, and two
undetermined constants C, and C,:

x(t)=C,cos(w,t) +C,sin(w, 1), (1.1.7)

where w,=+/k/m is the natural frequency of the oscillation. The two constants
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can be determined by two initial conditions, on the initial position and velocity:
x(0) =x,, v(0) = v,. (1.1.8)

Since Eq. (1.1.7) implies that x(0) = C, and x'(0) = v(0) = w,C,, the solution can
be written directly in terms of the initial conditions as

x(1) =x, cos(wyt) + %Sin(wot)- (1.1.9)
0

We can easily verify that this solution satisfies the differential equation by
substituting it into Eq. (1.1.6):

Cell 1.1
x[t_] = x0 Coslw, t] + v0/w, Sin[w, t];
Simplify[x"[t] == -w,"2 x[t]]
True

We can also verify that the solution matches the initial conditions:

Cell 1.2
x[0]
x0

Cell 1.3
x'[0]

vO

Order of a Differential Equation The order of a differential equation is the
order of the highest derivative of the unknown function that appears in the
equation. Since only a first derivative of v(¢) appears in Eq. (1.1.1), the equation is
a first-order differential equation for v(¢). On the other hand, Equation (1.1.6) is a
second-order differential equation.

Note that the general solution (1.1.3) of the first-order equation (1.1.1) involved
one undetermined constant, but for the second-order equation, two undetermined
constants were required in Eq. (1.1.7). It’s easy to see why this must be so—an
Nth-order differential equation involves the Nth derivative of the unknown
function. To determine this function one needs to integrate the equation N times,
giving N constants of integration.

The number of undetermined constants that enter the general solution of an
ordinary differential equation equals the order of the equation.
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Partial Differential Equations This statement applies only to ordinary differen-
tial equations (ODEs), which are differential equations for which derivatives of the
unknown function are taken with respect to only a single variable. However, this
book will also consider partial differential equations (PDEs), which involve deriva-
tives of the unknown functions with respect to several variables. One example of a
PDE is Poisson’s equation, relating the electrostatic potential ¢(x,y, z) to the
charge density p(x, y, z) of a distribution of charges:

Vi(x,y,2) =~ DB T E) (1.1.10)

€

Here €, is a constant (the dielectric permittivity of free space, given by €, =
8.85... X107 "2 F/m), and V* is the Laplacian operator,

,  d°? d° d°
Vi=—+—+—. (1.1.11)

ax*  dy*  9z*

We will find that V< appears frequently in the equations of mathematical physics.

Like ODEs, PDEs must be supplemented with extra conditions in order to
obtain a specific solution. However, the form of these conditions become more
complex than for ODEs. In the case of Poisson’s equation, boundary conditions
must be specified over one or more surfaces that bound the volume within which
the solution for ¢(x, y, z) is determined.

A discussion of solutions to Poisson’s equation and other PDEs of mathematical
physics can be found in Chapter 3 and later chapters. For now we will confine
ourselves to ODEs. Many of the techniques used to solve ODEs can also be
applied to PDEs.

An ODE involves derivatives of the unknown function with respect to only a
single variable. A PDE involves derivatives of the unknown function with
respect to more than one variable.

Initial-Value and Boundary-Value Problems Even if we limit discussion to
ODEs, there is still an important distinction to be made, between initial-value
problems and boundary-value problems. In initial-value problems, the unknown
function is required in some time domain ¢ > 0 and all conditions to specify the
solution are given at one end of this domain, at ¢ = 0. Equations (1.1.3) and (1.1.9)
are solutions of initial-value problems.

However, in boundary-value problems, conditions that specify the solution are
given at different times or places. Examples of boundary-value problems in ODEs
may be found in Sec. 1.5. (Problems involving PDEs are often boundary-value
problems; Poisson’s equation (1.1.10) is an example. In Chapter 3 we will find that
some PDEs involving both time and space derivatives are solved as both boundary-
and initial-value problems.)
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For now, we will stick to a discussion of ODE initial-value problems.

In initial-value problems, all conditions to specify a solution are given at one
point in time or space, and are termed initial conditions. In boundary-value
problems, the conditions are given at several points in time or space, and are
termed boundary conditions. For ODEs, the boundary conditions are usually
given at two points, between which the solution to the ODE must be
determined.

EXERCISES FOR SEC. 1.1

(1) Is Eq. (1.1.1) still a differential equation if the velocity v(¢) is given and the
force F(t) is the unknown function?

(2) Determine by substitution whether the following functions satisfy the given
differential equation, and if so, state whether the functions are a general
solution to the equation:

(a) iiitf =x(t), x(t)=Csinht + C,e™".
de\* g2 2 G
(b) (E) —x(1), x(t) = Ha* + 1)~ &.
d*x d*x d’x dx . _ 21?
(0 —dt_4 —3F _7W+ISE+18X=12R’ x(t)=ae*t+be 2I+T
0,1
9 9

(3) Prove by substitution that the following functions are general solutions to the
given differential equations, and find values for the undetermined constants in
order to match the boundary or initial conditions. Plot the solutions:

@ & —5x)=3, x(0)=1; x(t) = Ce™ +3/5.

dt
2
O T4 a0 =050 =0, ¥ (D) = 3 x(O=C, e+ Cate ™
3
(C) ‘z’in + % =t, x(0)=0, x'(0)= 1, x”(7T)= 0; x(t)=t2/2 +C1 Sin .

C,cost+Cs.

1.2 GRAPHICAL SOLUTION OF INITIAL-VALUE PROBLEMS

1.2.1 Direction Fields; Existence and Uniqueness of Solutions

In an initial-value problem, how do we know when the initial conditions specify a
unique solution to an ODE? And how do we know that the solution will even exist?
These fundamental questions are addressed by the following theorem:
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Theorem 1.1 Consider a general initial-value problem involving an Nth-order
ODE of the form

dx _( dx d’x  dV'x
dr™ =f O g g

(12.1)

for some function f. The ODE is supplemented by N initial conditions on x and
its derivatives of order N — 1 and lower:

dx d’x " il
X(O)le)’ E =V, d[: T Agyeeey —_dt-\-_l —
Then, if the derivative of f in each of its arguments is continuous over some
domain encompassing this initial condition, the solution to this problem exists and
is unique for some length of time around the initial time.

Now, we are not going to give the proof to this theorem. (See, for instance,
Boyce and Diprima for an accessible discussion of the proof.) But trying to
understand it qualitatively is useful. To do so, let’s consider a simple example of
Eq. (1.2.1): the first-order ODE

‘% =f(t,v). (1.2.2)

This equation can be thought of as Newton’s second law for motion in one
dimension due to a force that depends on both velocity and time.

Let’s consider a graphical depiction of Eq. (1.2.2) in the (¢,v) plane. At every
point (z,v), the function f(¢,v) specifies the slope dv/dt of the solution v(z). An
example of one such solution is given in Fig. 1.1. At each point along the curve, the
slope dv/dt is determined through Eq. (1.2.2) by f(¢,v). This slope is, geometri-
cally speaking, an infinitesimal vector that is tangent to the curve at each of its
points. A schematic representation of three of these infinitesimal vectors is shown
in the figure.

The components of these vectors are

(dt,dv)=dt(l,%) = di(1, f(1,0)). (1.2.3)

The vectors dt(1, f(z,0)) form a type of vector field (a set of vectors, each member
of which is associated with a separate point in some spatial domain) called a
direction field. This field specifies the direction of the solutions at all points in the

AV av/dt = f(t,v)

dv
at

Fig. 1.1 A solution to dv/dt = f(t,v).

Y
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Fig. 1.2 Direction field for dv/dt =t — v, along with four solutions.

(1,v) plane: every solution to Eq. (1.2.2) for every initial condition must be a curve
that runs tangent to the direction field. Individual vectors in the direction field are
called tangent vectors.

By drawing these tangent vectors at a grid of points in the (z,v) plane (not
infinitesimal vectors, of course; we will take dt to be finite so that we can see the
vectors), we get an overall qualitative picture of solutions to the ODE. An example
is shown in Figure 1.2. This direction field is drawn for the particular case of an
acceleration given by

f(t,v)=t—v. (1.2.4)

Along with the direction field, four solutions of Eq. (1.2.2) with different initial v’s
are shown. One can see that the direction field is tangent to each solution.
Figure 1.2 was created using a graphics function, available in Mathematica’s

graphical add-on packages, that is made for plotting two-dimensional vector fields:
PlotVectorField. The syntax for this function is given below:

PlotVectorField [{vxI[x,y],vylx,yl}, {x,xmin,xmax},{y,ymin,ymax},options] .
The vector field in Fig. 1.2 was drawn with the following Mathematica commands:

Cell 1.4

< Graphics®
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Cell 1.5

flt_, v.] = -v + t;
PlotVectorField[{1, £[t, v1}, {t, o0, 4}, {v, -3, 3},
Axes — True, ScaleFunction— (1 &), AxesLabel— {"t", "v"}]

The option ScaleFunction->(1&) makes all the vectors the same length. The
plot shows that you don’t really need the four superimposed solutions in order to
see the qualitative behavior of solutions for different initial conditions—you can
trace them by eye just by following the arrows.

However, for completeness we give the general solution of Egs. (1.2.2) and
(1.2.4) below:

v(t)y=Ce "+1t—1, (1.2.5)

which can be verified by substitution. In Fig. 1.2, the solutions traced out by the
solid lines are for C =[4,2,1 — 2]. (These solutions were plotted with the Plot
function and then superimposed on the vector field using the Show command.)
One can see that for ¢ < =, the different solutions never cross. Thus, specifying an
initial condition leads to a unigue solution of the differential equation. There are
no places in the direction field where one sees convergence of two different
solutions, except perhaps as ¢ — . This is guaranteed by the differentiability of
the function f in each of its arguments.

A simple example of what can happen when the function f is nondifferentiable
at some point or points is given below. Consider the case

f(t,v) =v/t. (1.2.6)

<
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Fig. 1.3 Direction field for dv/dt=v/t, along with two solutions, both with initial
condition v(0) = 0.




