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1. Introduction

Transonic flows are those in which the local flow speed is close to the local sonic
speed. That is the local Mach number M, the ratio of flow speed g to sound speed
a,isclose toone: M = % = 1. This means that the dynamic pressure zg: and the
static pressure P are the same order of magnitude since %1,’,: ~ 11;1’- ~ 0(1).*
Since the local flow speed is approaching a critical value, we can expect some
special phenomena to occur, in contrast to other flow regimes, and indeed they
do. The qualitative features that dominate the situation are the existence of
throats in streamtubes when the local Mach number is one and the possible
occurrence of shock waves when the local Mach number is supersonic. In general
when a local supersonic zone is formed in the flow around an airfoil a shock wave
occurs. This also occurs when the flight speed is supersonic. (See Figure 1.1.1)

M1

Figure 1.1.1
Typical Transonic Flow Patterns

In technical applications this type of flow occurs in the neighborhood of
airplanes, such as the Boeing 727, 747 that fly close to the speed of sound. The
next generation of transports might include a “boom-less” airplane which flies
at supersonic speed at altitude but is subsonic with respect to sound speed at

* For an ideal gas a? = yRT = 5”3. At 10 Km altitude, P/Py = 2.6153 x 10’
P, = ground pressure = 1.01325 x 10°Newtons/m3, p = 4.153 x 10~ ! K¢
a = 299.53 m/sec, T = 223.25°K.



2 Transonic Aerodynamics

the ground ’I\'ansomc flows also occur in compressors and turbmes and around
hehcopter blades, in the throat’ reglons of supersonic wind tunnels, in mlets and
' m rocket nozzles Even at highly supersomc speeds a transomc region appears
near the nose of a blunt body “Quasi” transonic flows appear when an important
component of the flow veloc1tv is close to somc, as for exaxnple when a wing is
swept back close to the Ma.ch angle Onr = sm'1 +—, then the component normal
to the edge 1 1s ‘sonic.

The aim of this book is to present relatively a self-contamed treatment based
on an elementary knowledge of fluid mechamcs
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1.1 Framework

The book covers mainly ideal inviscid flow theory (gasdynzix}rlliés); "The resv
for external flows, are then applicable to flows at high Reynolds numbers p: =
streamlined bodies.- The viscous effects are assumed to be confined to the interic
of very thin regions. These shapes are desirable for technical applicatiéns and
experience shows that wide classes of engineering problems are amenable to. this
theory. For example, lift, drag, and moment for' three»—dimeﬁsional,_wings can be
calculated. - ' ' 2 o B ok : - ,

Viscous effects and interactions may be unportant but in: any case, ope must
know how to calculate the inviscid flows.

By

1.2 Mathematics

Perturbation methods will be used to give a systematic discussion of transonic
small disturbance theory. The use of this theory is justified by the fact the sim-
plified equations exhibit all the essential features and provide in many cases a
good numerical approximation to experimental results.” Various important simi-
larity rules appear which are not available for the exact equation. Further, since
a systematic procedure is employed corrections to the first-order theory can be
studied.

Seme special problems for more exact equations will also be studied.

Significant mathematical areas which enter the discussion are:

— Partial Differential Equations of Mixed Type
— Weak Solutions (Shock Waves)

— Hodograph Transformations

— Similarity Solutions .

— New Numerical Methods for Equations of Mixed Type
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1.3 Historical Note

Transonic flows have been studied theoretically since the beginning of the cen-
tury: (e.g.): S.A. Chaplygin “On Gas Jets”, Moscow University Press (1902)
(O Tazobix Cmpyax). ) )

_ Shock waves as isolated phenomena have been known for a long time. Early
U.S. experiments were done in the 1930’s (NACA Briggs, Dryden, Stack). These
were motivated by sonic effects near propeller tips.

Pioneering work in the field was done by Guderley (early 1950’s) and Frankl,
as evidenced by many references throughout this book. In more recent years a
vast literature has accumulated on the subject of transonic flow. In particular
many papers dealing with computations have appeared for both approximate and
more exact equations. .

It is not possible in this work to review all of these developments. We try
here to give a detailed theoretical picture of the basis of transonic flow and some
discussion of the ideas behind recent numerical approaches.
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REMARK: Equations of mixed type appear also in other contexts such as

oceanography, elastic shell theory, viscoelastic fluids.



2. Linearized Theory — Transonic Breakdown

Airplanes and slender objects cause only a small dlsturbance to the ambient state
on passage through the air. The theory pf “Aroustxcs descrlbes the propagation
rest. Thos all of lin-
Mivalent to acoustlcs

of such small disturbances usually in a uniforin

earized aerodynamics (subsonic, supersonic, Jnst
The solutions of acoustics are soluticns to ‘equation. However,

in aerodynamics new and typical boundary value prqblemé

Fas

For technical applicatiops it would be very useful if linear t};eory gz:n:'e a good
approximavtion. Linear solutions are easy to compute and further very general
problems can be formulated and solved. For example, R. T. Jones has shown, in
linearized supersonic theory, how to distribute the lift on a wiag of given span
so as to obtain the minimum wave drag. Unfortunately, linearized theory cannot
give the correct answer in the transonic range.

In order to understand the breakdown of linearized theory, we can consider
the development of the acoustic field around a body flying at sonic speed. For
this we need the equations of acoustics. The assumption of isentropy is adequate
for the weak disturbances of acoustics. This point will be discussed in some detail
later.

The framework of acoustics is that of an inviscid ideal gas. Viscous effects
are supposed to be confined to thin layers, such as boundary layers adjacent to
solid surfaces, vortex sheets, and the interior of “discontinuous” jumps in pressure
(shock waves). The main interest here is the calculation of forces normal to solid
surfaces and this can be done if flow separation does not occur. The fact that
viscous effects may modify the downstream flow considerably does not affect
the calculation of forces on the solid surfaces producing this flow. The ideal gas
assumption is not necessary since only small disturbances appear and an arbitrary
equation of state could be treated. However it is convenient and sufficiently
accurate for most technical applications.

This same framework will also cover most of our considerations on transonic

flows.
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2.1 Equations of Acoustics

Let q (z,y,2,t) be the flow velocity in the rest frame. (cf Figure 2.1.1). For
acoustics this is assumed to be small in some sense, e.g., :

1
| J P 2
lﬂ < 1; @ = sound speed at infinity = (1-5’-) ]
Qoo . . Poo

N = C—p:

Cy

for a diatomic gas,

= for a monotomic gas,

[JUNI, S R N |

— ratié of specific héét;s.
BASIC EQUATIONS: .

a %
continuity a—’: + Vepq =0, Ve=div;
T .
momentum p{a—(tl + quq} = —-VP, V=grad; (2.1.1)
- | P _Pa
isentropy — = .
P Poo

The acoustic equations are derived by assuming small disturbances
PlPo =1+ s,
p,s < 1. (2.1.2)
P/Py =1+ p,
These forms are substituted in the basic equations and squares and higher

powers of small quantities are neglected. Isentropy gives

1+p=(1+s)"=14~s+--" "~

or > .
. p=1s. : (2.1.3)
Continuity and momentum are:
ds %
‘a_t o V.q = 0, . 4 (2.14)
aq P
Py = P, Vp. (2.1.5)

Nonlinear convective effects are thus neglected. ‘The kinematic consequence fol-
lows from (2.1.5)
ow

= 0, w =V x q= curl q = vorticity. (2.1.6)
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AY
Rest
(P“,p.)

Figure 2.1.1.

Coordinates for acoustics

The vorticity at any point in the flow cannot vary with time. Since we assume
no distributed vorticity initially there can never be any distributed vorticity.
In aerodynamics, however, a concentrated vortex sheet must appear behind a
lifting wing. The vorticity so introduced obeys (2.1.6). In general, viscosity
is the mechanism by which vorticity is introduced into an aerodynamic flow.
For a subsonic trailing edge a Kutta condition is applied that the flow leave
the trailing edge smoothly. This is an indirect expression of viscous effects as
Reynolds numbers Re — oo and makes possible the unique specification of the
flow with a vortex sheet. At a supersonic trailing edge this condition of smooth
exit 1s taken care of by a trailing edge wave system. In linearized theory, an
edge ran be classified as supersonic or subsonic according to the undisturbed

compouent of flow normal to the edge.

Thus a perturbation velocity potential exists such that

q=V¢, ¢=¢(z,y,1,1). (2.1.7)
e . P " 8¢ . et e oo
The . o ntum eqgestion reads Vo 355 + Pocp) = 0 so that integration yieids
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%

pw%‘;’ + Poop = f(t) = 0, since disturbances vanish at infinity. Thus we have a
linearized Bernoulli equation ‘

. 3¢
P-P,=-p—
8 o0 b
”:7’2"%&% or { 1 aft} (2.1.8)
oo §= ——0——,
a3, a3t

relating the pressure (and force) field to the potential. The equation for the
potential comes from the continuity equation
4 .
i 3‘f+V- Vé=0, ai:%.
Thus we obtain the classxcal wave equation
1 82 a? a? a? 1 92
v? _Fa:?“(a_;*ﬁ*é;?)"zﬁ:o' (2.1.9)

The most typical property of solutions of the wave equation is that the effect
of a concentrated disturbance spreads isotropically at a finite speed a,. This
speed a, is a property of the medium and is independent of the nature of the
disturbance. A signal at the point Py at time ¢t = 0 spreads to a distance aot
at time t (Figure 2.1-2). A basic solution illustrating this property is obtained
from the spherically symmetric solution of (2.1.9) representing outgomg waves.
In spherical coordinates (R = /z? + y? + z2,t) the wave equation is

62¢ 2 9¢ 1 qub

IR? N— <+ ETR 02 i (2.1.10)
This can, because:gh g-o. #uck, be written )
2 2
GiRg) L o\RY_,, (2.1.11)

aR* a2, 0t?

Figure 2.1.2
Spherically spreading disturbance
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For only outgoing waves

o= L= Rew),

then the radial velocity ¢ = g% has a “near” field and a “far” field

3 _ f(t-R/as) f'(t-R/a)
AR R? , @R

“near field” : “far field”

-@im)

The solution can be considered to be produced by a source of fluid at the
origin and the “near” field shows an essentially incompressible flow (why?). As
R — 0 the outward mass flux (units of po,) is

'}l!imo 47rRzaa—Z(R,t) = —4n f(t) = Q(t) = Source Strength (2.1.18)

For the s_pecial case of an impulsive source Q(t) = 6(t) we obtain the fundamental
solution S§3, in 3-dimensional space, of the wave equation, l
1 6(t- R/ac)

4 . 4n R ’
This gives the potential at (R,t) due to unit source at (0,0) and is the solution
of : .

Fr i w ul e v I QLOMCLIO (2.1.15)

with ¢ = ¢, =0 at t = 0—.
That is, (2.1.9) is a version of the continuity equation and the right hand side

S(Rt) = S5'="— (2.1.14)

can be taken to represent the source strength.

(2.1.14) shows that indeed the propagation is sharp and that all of the dis-
turbance potential is concentrated on R = aoo.t. The corresponding pressure
= ’ 86  pos 8'(t - R/acs)

Polats gy ™ TR
shows the arrival of a (singular) compression followed by an expansion (Figure
2.1.3). The superposition (valid because of linearity) of spherical fields can by

(2.1.16)

envelope construction process produce, for example, cylindrical and plane waves
(Figure 2.1-4). It is clear then that when a body travels steadily supersonically
it out runs its signals. A moving point produces an envelope at the Mach angle
Onr (Figure 2.1.5).
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Figure 2.1.8

Pressure signal of an impulsive source

(e ™3 Qo

i

Figure 2.1.4
Envelope construction

=t



