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PREFACE

In the past few years there has been an explosion of activity in the field of dynamics
of fractal surfaces, which, through the convergence of important new results from
computer simulations, analytical theories and experiments, has led to significant
advances in our understanding of non-equilibrium surface growth phenomena. This is a
rare example where these three major approaches of physics can be successfully
applied to a far-from-equilibrium phenomenon. There is also considerable interest in
surface growth from a practical point of view, because rough surfaces and interfaces
are formed in a wide variety of natural and industrial processes. We think it is timely
to present these developments in a single volume, with the central theme of dynamic
scaling of marginally-stable self-affine fractal surfaces and interfaces. Our goal is to
bring together all the seminal papers in this specific area and avoid material from
outside this field or on controversial and highly specialized issues. To this end, we
have consciously tried to include only works that are considered to be conceptually
sound and of fundamental importance.

The book is divided into chapters consisting of reprints related to a single topic. We
have written an introductory section for each chapter in order to help unify the
different approaches to each topic. In addition, to make the contents of the reprints
more accessible and to standardize the notation, every reprint is preceded by a short
descriptive note.

We would like to acknowledge and thank many of the authors that are represented
here for the collaborations and the interactions that we have had with them over the
years. We wish to thank all the authors for granting us permission to reproduce their

work in this book. We would also like to thank Scott Anderson for a careful reading
of the manuscript and for his helpful suggestions.

Atlanta, Budapest, 1991 Fereydoon Family and Tamds Vicsek
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Chapter 1

INTRODUCTION

A rich variety of natural and technological processes lead to the formation of
complex interfaces (Thomas 1982). If the conditions of the growth process are such
that the development of the interface is neither stable or unstable and the fluctuations
are relevant, the resulting structure is a rough surface and can be well-described in
terms of self-affine fractals (Mandelbrot 1982). The investigation of fractal growth
phenomena (Stanley and Ostrowsky 1986, Vicsek 1989) has attracted great interest
during the past decade and, in particular, much of the most exciting advances have
been in understanding the dynamics of self-affine fractal interfaces. In many cases
rough surfaces are generated by a growing interface which advances as new parts are
added according to some dynamical process. Examples include crystal growth, vapor
deposition, electroplating, spray painting and coating, and biological growth. Fractally
rough surfaces may also be formed during the removal of material, as in chemical
dissolution, corrosion, grinding, erosion, blasting, wear and many types of polishing.
There also exists a third class of processes in which rough interfaces are spontaneously
formed without addition or removal of material. Fracture and interfaces between
different states of matter are examples of such surfaces. Therefore, one of the most
challenging problems in surface science is the understanding of the dynamics of rough
interfaces.

The general interest in the study of interface growth also stems from the fact that, in
addition to their practical significance in surface science, the dynamics of interfaces is
intimately related to a variety of other processes, including the propagation of flame
fronts, the long-time behavior in randomly stirred fluids, impurity roughening and
pinning of interfaces, and the problem of directed polymers in random media. These
relations provide powerful connections among seemingly different phenomena, which
can be exploited in the development of various approaches for understanding the
evolution of rough interfaces.

Dynamic roughening of interfaces is an example of a far-from-equilibrium phe-
nomenon. As in many nonequilibrium (and irreversible) processes, one is dealing with
an open system without a Hamiltonian formulation. At the present time there does not



exist a systematic formalism for treating such processes. This implies that the standard
approaches of statistical mechanics are not suitable for describing the interface growth
problem. However, the discovery that stochastically growing surfaces exhibit non-
trivial scaling behavior and naturally evolve to a steady-state without a characteristic
time or spatial scale, has led to the development of a general scaling approach for
describing growing interfaces (Family and Vicsek 1985). This formalism, which is
based on the general concepts of scale-invariance (Ma 1974) and fractals (Mandelbrot
1982), has become a standard tool in the study of growing surfaces. In particular, the
dynamic scaling approach has been applied to the study of a variety of theoretical
models of growing interfaces, and some recent experiments.

In the past decade, fractal and scaling concepts have provided effective methods for
analyzing systems having no characteristic spatial or temporal scale. In the absence of
a natural scale, rough surfaces should evolve into fractal patterns. However, the
existence of a specific growth direction and smoothing effects, such as surface tension
and surface diffusion, introduce a preferred direction in the formation of growing
surfaces. This implies that growing interfaces are locally rough, but are anisotropic
and globally flat. This type of growth is in contrast to the kind of large scale
instabilities that are usually associated with diffusion-limited growth processes (Witten
and Sander 1981), such as solidification, viscous fingering, electrodeposition, and
chemical dissolution. Since marginally stable interfaces have an anisotropic pattern,
they are not self-similar on all length scales. They are examples of self-affine fractal
patterns which occur quite widely in many dynamical processes.

There have been significant advances in our understanding of the dynamics of
fractal surfaces in recent years, through the convergence of important new results from
computer simulations, analytical theories and experiments. This is a rare example
where these three major approaches of physics can be successfully applied to a
nonequilibrium phenomenon. In this book we present these developments in a single
volume by bringing together some of the most important papers in this field.

This book is organized as follows. The material is divided into chapters consisting
of reprints related to a particular aspect of the physics of growing fractal surfaces.
Each chapter has a general introduction to provide scientific background for the papers
reproduced in the main part of these chapters. They are written in a pedagogical style
and contain only the most necessary information. To make the content of the reprints
more accessible to the reader, each of the papers is also preceded by a short
description of what we find to be their most important results. In addition, in these
brief descriptions the notation used in the paper is related to the standard notation
introduced at the beginning of each chapter.

The following chapter (Chapter 2) is devoted to papers about the mathematical
aspects of rough surfaces. Self-affine fractals have a number of distinct features from
self-similar ones which become clear from the selected reprints. The papers reproduced
in this chapter also demonstrate the richness of self-affine geometry and describe many
properties which are useful in the analysis of related numerical and experimental
results.



Chapter 3 contains the most important papers on the dynamic scaling of growing
interfaces. These papers illustrate how the dynamic scaling picture used today emerged
from the studies of various models of surface growth. The papers provided in this
chapter formulate the most interesting questions one can ask about fractal surfaces and
introduce the theoretical framework and formalism which has been used widely in the
works reproduced in the following chapters.

The application of the concept of dynamic scaling to a large class of growth models
is demonstrated by the reprints collected in Chapter 4. The selected papers concentrate
on determining the most important quantities related to dynamic scaling, such as the
exponents and the scaling function. Among the further important issues discussed are
the behavior of the exponents for high spatial dimensions and their dependence on the
various quantities which may affect the growth process.

The last chapter is devoted to experimental studies of self-affine growth. There are
only a limited number of such reprints; however, they are expected to play an
increasingly important role in the future. This is especially true since the available
experimental results are apparently inconsistent with the predictions based on the
simplest models of fractal growth.






Chapter 2

SELF-AFFINE GEOMETRY

Self-affine fractals are objects which are invariant under affine transformations
(Mandelbrot 1982, 1985, Voss 1985a, 1985b, 1988). This means that if a small piece
of the fractal is blown up in an anisotropic way, the enlarged version can be made to
match the whole object. The stress here is on the anisotropic rescaling of the lengths.
Self-affine fractals should be distinguished from self-similar fractals, which can be
magnified isotropically to observe the similarity at different scales. Anisotropic
rescaling means that the factor which is used to calculate the coordinates of the
magnified object depends on the direction.

A rough interface can be well described in terms of nowhere differentiable,
single-valued self-affine functions. A self-affine function A(x) has the property

hGxy, ... x) = ATH AN Xy, L., AX,) 2.1

where H; is called the roughness or Hurst exponent (Mandelbrot 1982). Typically there
is only one characteristic roughness exponent H and the x; are equivalent from the
point of view of scaling and (2.1) has a simpler form A(x) = A ~#h(Ax). For example,
in the case of a single variable x, (2.1) expresses the fact that the function is invariant
under the following rescaling: shrinking along the x axis by a factor of 1/A, followed
by rescaling of the values of the function (measured in the perpendicular direction) by
a different factor A~". For some deterministic self-affine functions this can be done
exactly, while for random functions the above considerations are valid only in a
stochastic sense (expressed by using the sign =). There are self-affine fractals which
are different from single-valued functions; however, the growth of marginally stable
interfaces typically leads to surfaces which can be well approximated by single-valued
functions.

It can be shown that (2.1) is equivalent to the statement that the average width w(x)
of the function h scales with the exponent H if parts of the function are considered
over different linear regions of length x. In the one-dimensional case this means that

w(x) ~ xf 2.2)



where the left-hand side is the average of the widths w(x) = (h*(x)) — (h(x))?, taken
over intervals of length x. Alternatively, the average height difference between points
separated by distance x scales as

(|h(x" + x) — h(x")|) ~ x . (2.3)

Thus, expressions (2.1)—(2.3) represent equivalent definitions of self-affine surfaces
and the various methods based on these definitions can be looked at as analogous
approaches.

Let us review a few examples of self-affine functions in order to get more insight
into the many possible cases.

i) As a deterministic self-affine fractal defined on a finite interval we consider the
series

> 1 — cos(b"x)
Ckx) = 2 pe—Dm

n=—o

2.4

which is the real part of the more general Weierstrass-Mandelbrot function (see
Fig. 2.1). It is easy to see that the first derivative of the above function diverges
everywhere for 1 <D <2 and 1 < b, although the function itself remains con-
tinuous. Formally replacing n with n + 1 in (2.4) leads to the scaling relation
C(x) = b~@DC(bx) which is equivalent to the definition (2.1).

Since C(x) can be looked at as a Fourier series, (2.4) suggests that the reason for
the absence of a characteristic length-scale for C(x) is a result of the fact that the
frequencies b” form a spectrum spanning the range from zero to infinity. Similarly, the
coefficients A(f) of the Fourier spectrum of a stochastic self-affine function with a
roughness exponent H are independent Gaussian random variables and their absolute
value scales with the frequency f according to a power law

|A(H| ~ FH7V2. 2.5)

ii) The next construction is a function which can be viewed as a deterministic
version of the plot of the position of a randomly diffusing particle in one dimension as
a function of time. The self-affine fractal is generated on the unit interval by a
recursive procedure, replacing the intervals of the previous configuration with the
generator having the form of an asymmetric letter z made of four intervals. During
each step every interval is regarded as a diagonal of a rectangle becoming increasingly
elongated as we go to the next step. The base of the rectangle is divided into four
equal parts and the z-shaped generator replaces the diagonal in such a way that its
turnovers are always at analogous positions (at the first quarter and the middle of the
base). Figure 2.2 shows the first three steps k of the construction. The function
becomes self-affine in the limit k — .

It is easy to see that a small part of the k = 3 stage has to be dilated horizontally by
a factor of 4 and vertically by a factor of 2 to match the k = 2 curve. For a true



Fig. 2.1. Real part of the Weierstrass-Mandelbrot function on the interval [0.5, 1.0]. In spite of its
deterministic origin, this figure strikingly resembles some of the randomly growing self-affine surfaces
obtained in computer simulations.

Fig. 2.2. Construction of a Brownian plot-like self-affine function with an iteration procedure.

self-affine fractal (k — %) such rescaling leads to a perfect matching on all length
scales. Of course, physical objects always have a lower cutoff length below which
there is no nontrivial geometrical behavior. For simple shapes, self-affinity is not
fulfilled, or it is satisfied in a trivial way. One can, for example, scale parabolas of
various sizes onto each other. This, however, cannot be done if one tries to use only a
small part of a parabola taken far from its tip.



