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Preface

Few components have revolutionized the area of optical communications as the
fiber-optic amplifier has. The simple technology of light-pumped erbium-doped
silica fibers has today provided commercially available amplifiers with high gain
and low-noise properties at 1550 nm. Furthermore, recent developments in neo-
dymium- and praseodymium-doped fluoride glass amplifiers have shown promising
results for the 1300-nm wavelength band.

This book presents a review of the properties of optical fiber amplifiers, with
a specific focus on the telecommunication engineering aspects. Highly accurate
models for erbium-doped fiber amplifiers are shown to be very useful tools for
manufacturers developing optimized 1550-nm fiber amplifiers for various system
applications. The merits of optimized erbium-doped fiber amplifiers are compared
both experimentally and theoretically for the relevant 800-, 980- and 1480-nm pump
bands, where semiconductor laser pump diodes are obtainable. Fiber designs are
evaluated and practical designs are given with emphasis on applications in digital
direct detection systems. Trunk systems with lumped and distributed gain are
described, and there is a short review of amplifier applications in systems employing
analog modulation. Amplifiers operating around 1300 nm are also described, and
the attainment of significant improvements for neodymium- and praseodymium-
doped fiber amplifiers is discussed.
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Chapter 1
Introduction

Optical communications was introduced as a concept only 20 years ago, when it
became possible to reduce the attenuation in silica glass to a few decibels per
kilometer. Since then, optoelectronics and silica fibers have been the subject of
largescale worldwide research and product development. As a result, optical com-
munications is today established as one of the most promising technologies within
the area of short- and long-distance data transmission.

A major thrust of research activity within the area of optical communications
is to increase the capacity of optical systems. The ultimate capacity limits have
until very recently been determined by the spectral bandwidth of the signal source
and of the fundamental fiber parameters: attenuation and dispersion. In order to
characterize a given transmission line, terms such as loss-limited or dispersion-
limited systems have indicated the limiting property. In reviewing the development
of optical systems, it can be seen that there has been an alternation between these
two extremes.

Ten years ago, when most of the systems were made using multimode fiber,
the difference of propagation constants between the fiber modes caused consid-
erable pulse broadening, and the optical communication systems were clearly dis-
persion-limited. As reliable semiconductor lasers with high intensity and spectral
purity became commercially available, an important turning point in the devel-
opment of optical communication systems was reached. Namely, multimode fiber
was superseded by single-mode fiber, in which only a much weaker chromatic
dispersion can result in pulse broadening. At a specific signal wavelength (i.e.,
1310 nm), standard silica fibers have no chromatic dispersion. This wavelength
therefore became the most dominant, and the fibers were optimized for 1300 nm
operation. Using these “standard fibers,” the systems were, consequently, loss-
limited. However, the minimal intrinsic loss of silica fibers is not at the zero
dispersion wavelength but at 1550 nm, where the chromatic dispersion, on the other
hand, is nonnegligible: 15 ps/(km-nm).




Many resources in the mid 1980s were guided towards the elimination of
chromatic dispersion at 1550 nm. This was done by compensating for chromatic
dispersion with an opposite and equally large waveguide dispersion through a
carefully controlled design and manufacturing process. However, fibers of this type,
normally called dispersion-shifted fibers, cannot be made without the introduction
of additional losses in the fibers. A large-scale spreading of the dispersion-shifted
fiber into commercial systems, however, did not immediately take place, partly
because no urgent needs for zero-dispersion systems were present, since the ultra-
long transmission distances were still out of reach. This slightly restrained view of
system improvement by dispersion-shifted fibers was supported by rapid component
development, making dispersion less important as more spectrally pure signal
sources were developed. Intensive international research on coherent communi-
cations, in addition, which is based specifically on signal sources of ultranarrow
linewidth, indicated that installation of dispersion-shifted fibers with their somewhat
poorer loss properties gave only little long-term guarantee that the best system was
chosen.

There were, therefore, a number of practical problems that had to be over-
come before a clear picture of future optical communication systems could be
formed. Among the important subjects for clarifying this was the research on
semiconductor amplifiers, which, however, suffered from problems such as cross-
talk and polarization sensitivity in addition to difficult fiber-to-amplifier coupling.

At the same time, a parallel development took place, which in only three
years would be shown to have a much larger impact on optical communication
systems than that mentioned above. With a point of reference in work on rare-
earth-doped glass lasers initiated as early as 1963 [1,2], the first fiber amplifiers
(as possible useful devices for telecommunication applications [3]) were demon-
strated in 1987. Progress since then has multiplied to the extent that amplifiers
today offer far-reaching new opportunities in telecommunication networks [4-6].
The erbium-doped silica fiber amplifier for the 1550-nm telecommunication window
has now become a well-established research laboratory tool. The fiber amplifier
has been used both in system demonstrations on land and under the sea, and
operational systems are commercially available from a number of manufacturers.
In distribution experiments, splits of up to 39 million subpaths have been dem-
onstrated for only two stages of amplification [7]. In short, this amplifier has
revolutionized thinking on future optical fiber networks.

The main reason for the very strong impact that the optical amplifiers have
and will have on data communication systems is to be found in the fact that they
are unique in two respects: they are useful for amplifying input signals of different
bit rates or formats, and they can be used to achieve simultaneous amplification
of multiwavelength optical signals over a wide spectral region. These multiwave-
length optical signals can carry different signal formats, including digital data, digital
video, and analog video, allowing flexible upgrading in a broadband distribution



network by adding extra wavelength division multiplexed (WDM) channels as
needed. With optical amplifiers, therefore, the bottleneck of narrow and fixed
bandwidths of electrical repeaters is avoided.

The outstanding properties offered by optical amplifiers are:

* High gain;

* High power conversion efficiency;
¢ Low noise;

¢ Low crosstalk;

* High saturation power;

+ Polarization insensitivity;

* Broad spectral bandwidth;

* Very low coupling losses;

* Low cost.

This short list of fiber amplifier properties underlines the huge potential of these
components, which most likely will extend to a large variety of applications in the
years to come. The focus of this book will be, however, on the primary application,
which is the optical amplifier for telecommunication systems, and the goal is to
give a coherent description of the perspectives and limitations of fiber optical
amplifiers. The organization of the book is aimed at providing the expert with a
general reference source and the non-expert with a guide to the subject of rare-
earth-doped fiber amplifiers.

First, it is necessary to understand in detail the physical properties of rare-
earth-doped optical fiber. It is important to understand today’s technological lim-
itations, which are clarified through a description of the manufacturing process of
rare-earth-doped optical fiber presented in Chapter 2. In the following chapters,
the properties of rare-earth ions in glass host materials are discussed thoroughly.
Chapter 3 presents the basic physical properties of rare-earth ions in silica and
fluoride glass host materials, as well as the influence of different index raising co-
dopants, and clarifies the most important mutual interaction between rare-earth
ions. For all technical developments, it is essential to be able to characterize the
components through measurements, and Chapter 4 is therefore focused on mea-
surement techniques.

To date, the bulk of system work has centered on 1550-nm communication
systems and has used erbium-doped silica-based fibers. In Chapters 5, 6, 7, and 8,
the specific features and properties of erbium-doped fiber amplifier (EDFA) mod-
ules are discussed extensively. This naturally includes the use of other optical
components, such as high-power semiconductor pump sources, fiber couplers, one
or more isolators, and possibly optical filters. It is, however, not the purpose of
this book to go into a thorough description of the physical properties of these
additional components, since they are well characterized and described elsewhere.
The focus will therefore be on erbium-doped fiber, which in Chapter 5 will be



