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PREFACE

THIS book is an introduction to recent work in the theory of func-
tions of several complex variables, especially on complex spaces.
Many results of a local character, relating to the ring of germs of
holomorphic functions at a given point, holomorphic mappings,
analytic continuation, analytic sets and so on are usually assumed
known, although they are not proved in the well-known books of
Behnke-Thullen and Bochner-Martin and are available only in the
original papers of H. Cartan, R. Remmert, K. Stein and others, or
in seminar notes. (See [3], [5] in the references).

I thought that it might be useful to put all this material together,
and that a new treatment might suggest fresh ideas. The treatment
given here is as self-contained as was found possible. The reader
needs only to be acquainted with the classical theory of holomorphic
functions of a complex variable, and with a few results from Algebra,
which are summarized in Chapter II, § 2.

The text is based on a course of lectures given early in 1962 at
the Tata Institute of Fundamental Research, Bombay. I wish to
express my gratitude to Professor ‘K. Chandrasekharan who invited
me to give these lectures and decided to have them printed.

The major part of the text was actually written by Mr. R. R.
Simha. I think him warmly for his useful remarks and his whole-
hearted co-operation. I am also indebted to Dr. Raghavan Narasimhan
for important improvements.

Definitions and theorems are numbered in one sequence within
each chapter, but lemmas and propositions within each section. A
list of main definitions and results is given at the end of the book.

This second edition contains a few additions in close conaection
with the original text.

PARIS . MICHEL HERVE:
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I

BASIC PROPERTIES OF HOLOMORPHIC
FUNCTIONS OF SEVERAL VARIABLES

In this chapter we present some basic properties of holomorphic func-
tions of several complex variables, mostly without detailed proofs.

1. Holomorphic functions. The space we work in is an m-dimen-
sional vector-space C™ over the field C of complex numbers, m > 1.
In general we shall suppose a basis fixed for C™, and identify C™
with the space of ordered m-tuples x = (x,..., X,,) of complex
numbers.

Given a pointa = (ay, . .., a,) of C", and real numbers ry,...,
rm >0, we call the set P={(x1,...,xm) EC"||x; —a;| <1y,
Jj=1,..., m} the open polydisc with centre a and radii r;. Similarly,
the closed polydisc with centre a and radii r; is the set

P={(xt,...,xmEC"||x;—a;|<rpj=1,...,m}
The set

F={xy,...,xneEe C"||x;—aj|=r;,j=1,...,m}
is called the edge, or distinguished boundary, of P (and of P). The set
of all open polydiscs is a basis for the “usual” topology on C™. (The
topology thus defined does not depend on the choice of the basis
for C™.)

NorRMAL CONVERGENCE. A series Y. f, of complex-valued func-
tions defined on a. set E is said to converge normally on E if

Y Ifull < 4005 here || fll = sup | /().

n

ABEL’S LEMMA. Suppose the power series
k k
S = > ag Xit L Xy
ki Shos0 K ke o
in m variables € C converges* at the point (b, ..., b,) of C™, and

let b; # 0 for j=1 to m. Then S converges at every point of the

*Only absolute convergence will be considered in this book.
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open polydisc P with centre the origin of C™, and radii bj; and S
converges normally on every compact subset of P.

DEFINITION 1. A complex-valued function f, defined on an open
subset U of C™, is holomorphic in U if for every point b € U, there
exist an open polydisc P C U with centre b, and a power series

Y g, = bY. .. (xa— bn)-
Isessla 20
converging to f(x) at every point x € P.

REMARK. Suppose f is holomorphic in U. Then by Abel’s lemma,
the power series S converges normally on compact subsets of P.
Hence a holomorphic function is continuous.

PrOPOSITION 1. Let fi,. .., f, be holomorphic functions on an open
subset U of C™, and suppose that for every x in U, (fi(x),...,/fx(x))
lies in a given open set V in Cp. Then for every holomorphic function g
on V, the function g(fi(x), ..., f)X)) is a holomorphic function of x
on U.

This follows from associative properties of normally convergent
power series.

COROLLARY 1. The holomorphy of a function on an open set in C™
does not depend on the choice of a basis for C™.

COROLLARY 2. Iff and g are holomorphic functions on an open set
U in C™, the functions f + g, fg are holomorphic in U. If g does not
vanish anywhere in U, the function f|g is holomorphic in U.

COROLLARY 3. Let f be a holomorphic function on the open set U in
C™, Then for every point a = (ay, . . . , am) of U, and every j (1 < j < m),
the function f(ay, . . . , @j—15 Xjs Gj415 - - - s Gm) Of one complex variable
x;, defined on the open set '

(X, €C| @15 --5 oty X3, Qja1y - -« s a-,;le U}
in C, is holomorphic there.

REMARK. Suppose conversely that f is a complex-valued function
on U such that each function of one complex variable obtained from
f as above is holomorphic in the corresponding open set in C. Then
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f is holomorphic in U (Theorem of Hartogs-Osgood). This is a deep
result, which we shall not prove in this book. For a proof, see
Bochner and Martin ([1], p. 140).

PROPOSITION 2. Let f be a holomorphic function on an open
set U in Cm. For any integers ki, ..., km = 0, the partial derivative

akl + ... 4 k.,f .
[ T— exists and is holomorphic in U. More precisely let
ox{t. .. oxm

P C U be an open polydisc with centre b, and let S be a power series
in the x; — b;,j=1,..., m, converging to f in P. Then the power
series obtained by termwise differentiation of S, k1 times with respect to
3k‘ + ... 4 k,,,f

X1, .« - . » ki times with respect to x,,, converges to T
oxi'...0x "

in P.
COROLLARY 1. With the notation of Prop. 2, the coefficient of

1 gat ...+ k"{f(b) 5o
kl! o e km! ax{cl — ax’,flm : ]
particular, the power series S is uniquely determined by the values of f
in a neighbourhood of b. We call it the Taylor expansion of f at b.

(1 — b))k ... (X — b in S is

COROLLARY 2. Let f and g be holomorphic functions on a connected
open set U in C™. Suppose f=g on a non-empty open subset of U.
Then f = g everywhere in U (Principle of Analytic Continuation).

PrOOF. Let V= {x& U|f= gin a neighbourhood of x}. V is
non-empty by assumption, and by definition it is open. Plainly a
point x € U belongs to V if and only if f and g have the same
Taylor expansion at x. By Corollary 1, this means that

gk + ... ‘H‘-f(x) _ g+ ... +k,.g(x)}
axki L oxke T axki | oxke [’

hence V is closed in U. U being connected, ¥V = U, q.e.d.

V= n {xEU‘
ki,....,ka 20

REMARK. We shall see later (Chapter III, § 1) that if f=g on
a subset F of U such that U — F is open and disconnected, or
locally disconnected (i.e., there exists an open connected set W C U
such that W N (U — F) is disconnected), then f = g on U.
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2. Germs of holomorphic functions. Let X be an arbitrary subset
of C™. We consider the set E(X) = E of pairs (U, f), where U is an
open set in C™ containing X and f a function holomorphic on U.
We define a relation R on E as follows: (U, f) R (V, g) if and only
if f=g on an open set (C UN V) containing X. Clearly R is an
equivalence relation.

DEFINITION 2. A4 germ of a holomorphic function on X is an
equivalence class of E(X) with respect to the relation R.

We denote by J((X) the set of germs of holomorphic functions
on X. With the obvious addition and multiplication, 4 (X) is a
commutative ring- with identity. It is clear that each element of
J((X) has a well-defined value at each point of X; however, in
general, distinct elements of 4{(X) may have the same value at all
points of X.

REMARK 1. Suppose the set X is the closure of its interior; or
suppose each connected component of X has an interior point. Then
any element of 4{(X) is uniquely determined by its values on X. In
fact, suppose (U, f), (V, g) € E(X), and f = g on X. Then, in both
cases, it is clear from Corollary 2 to Prop. 2 that f=g on all
connected components of U N ¥ meeting X. Hence (U, f) R (V, g).

REMARK 2. Suppose X contains just one point a. In this case
we write 4(X) = J(7. Two functions holomorphic in an open
neighbourhood of @ coincide in a neighbourhood of a if and only
if they have the same Taylor expansion at a. Thus 4(5 is isomorphic
to the ring of convergent power. series in m complex variables.
(A power-series b ag, . . k,x{“ oo el

kiy....kn>=0
vergent if it converges in an open polydisc with centre the origin of

= is said to be con-

C™.) The value of an element of 9(; at a is, of course, the constant
term of its Taylor series.

3. Cauchy’s integral formula. Let fbe (a germ of) a holomorphic
function on the closed polydisc P in C™ with centre a and radii rj.
Then for every point x of the open polydisc P with the same centre
and radii, we have
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1 Ty oo o s Ym)
1) = iy [ @ | ISt

[Vm— | ="m [yi—a|=n

where, for the integrations, the circles |y; — a;| = r; are assumed
positively oriented.

This follows immediately from Cauchy’s integral formula for
holomorphic functions of one complex variable.

COROLLARY 1. With the above notation the Taylor series

S = b ag, . k.(x1— @)kt (Xm — aw)¥n of f at a con-
ki,..., k,>0 "

verges in P.

In fact, the integrand in the Cauchy integral formula can be
expanded in a power series in the x; — a;, converging in P, and
with coefficients which are functions of y on the edge I" of P. Since
f is continuous, hence bounded, on I, this series (for each x in P)
converges normally on I. The series can therefore be integrated
termwise, and yields a power series in the x; — a; converging to f
in P.

REMARK. Suppose that fis a holomorphic function on an open
set U in C™. The above result implies that the Taylor series of f at any
point a € U converges in any polydisc with centre a, contained in U.

COROLLARY 2. With the notation of Corollary 1, we have, for any
kl9'--’km>0’

1
a < —— Su s
I i s 5 .k,,,l I'lk' T r":'" ye‘; |f(y)l

where I' is the edge of P (Inequalities of Cauchy).
In fact the integral formula yields

Ay ..k, =

1 f(J’l, e ym)
—_— dyy ... I Lol dy,,
(21”)’” '[ “ (yl_al)kl-i-1 L ()'m—am)km-{'l i

[Vm—Am| =" [y—ai|=r,

leading to the given majorisations.
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REMARK. Let &F be a family of holomorphic functions on an
open set U of C™, uniformly bounded on compact subsets of U.
Since the Taylor series of the partial derivatives of a holomorphic
function may be obtained by termwise differentiation, the in-
equalities of Cauchy imply that for every ky, ..., k, > 0 the family

kit tkny ' .
{ﬁ fe 9'} is also uniformly bounded on compact
Oxft ... Oxtm

subsets of U. In particular, the family of all first partial derivatives
of members of &F is uniformly bounded on compact subsets of U,
hence the family F is equicontinuous. It follows from Ascoli’s
Theorem (see [2], p. 43), that one may extract, from any infinite
sequence of members of &, a subsequence which converges uniformly
on every compact subset of U.

CoROLLARY 3. (The Maximum Principle.) Let f be a holomorphic
Junction on an open set U in C™. Let dU be the boundary of U—if U
is not relatively compact in C™, dU is to include the point at infinity
of C™. Suppose that, for every point y of U, lim sgg [f(x)] < M.

X=>y, X

Then (i) | f] < M in U, (ii) if | f(xo)l = M for a point xo in U, then
J(x) = f(x0) on the connected component of U containing x.

This is proved as in the case of one complex variable, using the
integral formula.

4. Weierstrass’ Theorem. If a sequence {f,} of functions, holo-
morphic on an open subset U of C™, converges uniformly on every
compact subset of U, then (i) the limit function f is holomorphic in U,
akl-i- ceotkn £

Sk ook, ( Converges
311' - 3xm

(ii) for any ky, ..., k,, = 0, the sequence{

akl + cas + k,,,f
10 ——————= on U, uniformly on every compact subset of U.
axf" oo Oxim

The first statement is proved by using Cauchy’s integral formula,
the second one then follows from Cauchy’s inequalities.

COROLLARY 1. If a power series in x, . . . , Xm cOnverges in an open
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-

polydisc P with the origin, of C"‘ as cent'/ then the sum is a holomorphic
function on P. ™

COROLLARY 2. Let U be an open set in C™, K a compact space, and

¢ a Radon measure on K. Suppose (x, y) — f(x,y) is a continuous
Jfunction on U x K, and x — f(x, y) is a holomorphic function on U for

each fixed y in K. Then (i) the function F(x) = L{ S(x, y) du(p) is holo-

morphic in U, (i) for any kv, . .., km = 0,
ok "‘"""k'"F(x) —-I 3k,+...+k,.:f(x’y)
ax{" - ax,’fin Jx 3x{“ - 6x,’fl~
We thus obtain, in particular, the Cauchy integral formulas for the
partial derivatives of a function holomorphic on a closed polydisc.

au(y).

5. Holomorphic mappings.

DEFINITION 3. A mapping f(x) = (fi(x), . . ., f,(x)) of an open sub-
set U of C™ into C? is holomorphic if its coordinates fi(X), . . . ,f,(x) are
holomorphic functions on U. If p = m, then the Jacobian Js(x) of f at
(%)

ox; )

x & U is the determinant of the matrix

We shall give a complete proof of the following theorem.

THEOREM 1. Let f be a holomorphic mapping of an open subset U
of C™ into C™, and suppose Je(a) # 0 at a point a € U. Then there
exist open neighbourhoods V(CU) and V' of a and f(a) respectively
such that (i) the restriction f| V of f to V is one-one in V and maps V-
onto V', (ii) the inverse mapping of f | V is holomorphic in V.

Proor. We may assume that a = f(a) = o, the origin of C™. Since
Js(s) # 0, we may also assume a basis for C™ so chosen that the
matrix of Js(o) is the identity matrix. For x &€ U, let us write
f(x) = x — g(x). Then g(x) defines a holomorphic mapping of U into
C™, and all the coordinates g;(x), with all their first partial deriva-
tives, vanish at 0. Using the mean-value theorem of the differential
calculus, we can therefore find an open polydisc P — U, with cenire
o and radii r, such that for all x, x’ in P,
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sy lgi(x) — g;(x")] < } Sup x; — xjl. *)
Let P’ be the open polydisc with centre o and radii r/2; (*) implies
in particular that g(P) C P’. We shall show that the assertions of
Theorem 1 are valid with ¥V = P N f~}(P’), and V' = P'.

By definition of V, V', we have fiV) C V’. We assert first that
S| Vis one-one. Suppose in fact that x, x' € V, x 5= x’ and f(x) = f(x').
Then x — x' = g(x) — g(x’), so that

sup |gi(x) — gi(x")| = sup Ix; — xj| (>0, since x # x").

1<j<m €j<m

However, V C P, so this is a contradiction. Now for'any y & V, we
set x19(y) = y, and define x")(y) for n > 1 inductively by x®)(y) =

Y + g(x"=1(y))—since g(P) C P', it is easily checked, by induction,
that x(")(y) & P for all n. We have, for n > 2,

xX(y) — x=(y) = g(x"-1(y)) — g(x"-2(y)),
and hence (*) easily leads to the majorisation
sup |x°0) — 5" PO < 55 n> L.

1<j<m
Hence the sequences {x, )( )} converge umformly on V’'. Plainly the
,")( ) are holomorphic functions on ¥’, hence the limit x;(y) of the
x”(y) is a holomorphic function on ¥, forj = 1,". .., m. Set x(y) =
(x1(»), . . ., Xm(»)). Then the mapping x(y) of ¥ into C™ is holomor-
phic. Since, for every n, x™(y) — y € P’, x(y) — y lies in P’. Since
y € P’, this means that x() lies in P. Again, for every n, x((y) —
g(x"=1(p)) =y, hence x(y) — g(x(»)) =y, i.e., f(x(¥)) = y. Since.
Sf1V is one-onme, this shows that f(V) = V', and that x(y) is the
inverse of f| V, q.e.d.

REMARK. Conversely, suppose fis a one-one holomorphic map-
ping of an open set U of C™ onto an open subset of C?. Then p=m,
and the Jacobian of f never vanishes in U. This will be proved later
(Chapter 1V, § 5).
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THE RING OF GERMS OF HOLOMORPHIC
FUNCTIONS AT A POINT

In this chapter, we shall be mainly concerned with the “Preparation
Theorem of Weierstrass”” and some of its consequences. This theo-
rem is an important tool in the local study of the zeros of holo-
morphic functions.

1. Preparation theorems. Let (™ denote, as before, the ring of
germs of holomorphic functions at the point a € C. If fis a holo-
morphic function on some open neighbourhood of @ in C™, we denote
by f the element of 4 induced by f. In particular, 0 and 1 are
respectively the zero element and the identity of 9/,

ProrosiTION 1. 47 is an integral domain.

PROOF. As observed before, 4(” is isomorphic to the ring of
convergent power series in m variables over C, which is a subring of

the ring F™ of formal power series in m variables over C. Since F”
is isomorphic (for m > 2) to the ring of formal power series in one

variable over F"-!, we can deduce, by induction on m. that Fm is
an integral domain, from the following fact: the ring A[[X]] of
formal power series in one variable X over an integral domain A4

is an integral domain. To prove this last fact, let f= Y apX*,
k=p

g= Y biX* p,g=>0,a,+#0, b, # 0, be two non-zero elements of
kzgq

A[X]]. Then fg = ¥ cX* with ¢y, = ab, # 0, q.e.d.
k=p+q
REMARK. Proposition 1 may also be deduced from the principle
of analytic continuation: if f/ is holomorphic on an open connected
set U in C", and vanishes on a non-empty open subset of U, then [
vanishes identically on U.
An element f & 4 is invertible if and only if f(a) # 0. Hence the

m

set of non-invertible elements of %' is an ideal (which is therefore
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the unique (proper) maximal ideal of 4(7'). We denote it by 4('z.

DEFINITION 1. Two elements f, g & (7 are equivalent: f~ g, if

there exists an invertible element h € Y{,; such that f = hg.

Clearly ~ is an equivalence relation in 4(;; and f~ g implies
that f and g have the same zeros in a neighbourhood of a. The trivial
equivalence-classes in 4{, with respect to this relation are those of
0 and 1, consisting, respectively, of 0 alone and of all invertible
elements of (5.

If x=(x1, ..., X») is any point of C"(m>2), we shall denote by x’
the point (x4, . . ., Xm—1)EC™"!; in particular, o and o’ are respectively
the origins of C™ and C™-1. Conversely, if x'=(x1, . . . , Xu—1)EC™},
and x,, = C, (x', x,,) denotes the point (xy, ..., Xm-1, Xm) € C". We
shall also write H(" = H™, H, "= '™

DEFINITION 2. A distinguished pseudo-polynomial in x,,, of degree
D, is an expression of the form xj + kzpl ck(x')x,’,’,"‘, p =1, where the
ci(x") are holomorphic functions on open neighbourhoods of o' in C™-1,
vanishing at o'.

A distinguished pseudo-polynomial induces a non-zero and non-

invertible element in 4(™.

THEOREM 1. (The Weierstrass Preparation Theorem.) Suppose
given an element f € 9('™ f +# 0. Then: (i) we can choose a basis for
C™ in such a way that f(0', X) does not vanish identically in any
neighbourhood of x, =0 in C'; (ii) if the basis for C™ is such
that f(o', x,,) does not vanish identically in any neighbourhood of
Xm =0 in C', there exists a distinguished pseudo-polynomial

= X + Zp: cr(x)x57* such that £ ~ <; (iii) if, with respect to the

q
same basis as in (i), ¢ = x%L + Y du(x")x%* is any distinguished
k=1

pseudo-polynomial such that { ~ f, then q = p, and for every k,
1 < k < p, cx and d induce the same element of Y(;"~' = 9{'™-'.

PrROOF. (i) Choice of the basis for C™. Let U be an open convex



