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PREFACE

The present collection of articles is the result of many years
of research conducted by our team into various aspects of designing
and building the component base of promising high-speed comput-
ational systems. The articles deal with the following topics:

(a) the optimal design and functioning of parallel computational
systems, (b) the optimal recognition of optical and acoustic fields
in synthesizing an optimal dynamic analyzer, and (c) the modeling
of nonlinear transfer processes in the component base of a computer.

We discuss new mathematical methods that can be applied in
solving specific problems arising in the construction of mathematical
models for handling the above-mentioned three topics. Although
various countries have developed devices and technological processes
for creating new generations of computers, there is still no general
theoretical approach. In this respect the present collection fills an
important gap in the literature on the subject.

All results set forth in this collection are new and obtained only
recently. Here we give a brief survey.

The article written by S. M. Avdoshin, V. V. Belov, V. P. Maslov,
and A. M. Chebotarev is devoted to constructing a theory of the
optimization problems that emerge in the development of the archi-
tecture, the organization of parallel computations, and the design
of flexible manufacturing systems for homogeneous multiprocessor
computational systems. The following concept lies at the base of the
suggested approach: all the optimization problems considered here
are linear in a space of functions with values in semirings. Depending
on the choice of the semimodule, for instance, the Hamilton-Jacobi
equation and the Bellman equation prove to be linear in the new
sense. For these equations analogs of the Duhamel principle and
the Fredholm alternatives prove valid. This concept leads to a new
definition of an integral corresponding to the semigroup operation
of the “sum” type, the concept of a measure additive in this new
sense, and an analog of the scalar product (say, (@, @,) =

min [, (z) + ¢, ()] or (9, ¢;) = max [min ¢, (), ¢, (z)l), which

x x

makes it possible to go over to adjoint operators and define functions
“generalized” in the new sense. On the basis of the “linearity” concept
and the notion of generalized convergence in optimization problems
dealing with homogeneous computational systems, we consider the
passage to the limit in a natural large parameter proportional to the
number of elementary processors in the computational system. For
a broad class of problems the solutions to the limiting equations can
he set up on the basis of Pontryagin's maximum principle.

The article by V. P. Belavkin and V. P. Maslov has a direct
bearing on the problem of mathematical synthesis of an optimal
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dynamic analyzer, a device intended for automatic sound recognition.
As is known, establishing a verbal link between man and computer
is one of the key problems in the design of fifth-generation com-
putational systems. The article provides a systematic exposition
of the wave theory of representations and measurements, the theory
that is based on similarities with quantum mechanics and used to
solve problems of detection, separation, identification, and estima-
tion of the parameters of acoustic and visual images within the frame-
work of the noncommutative theory of wave hypothesis testing. The
idea of applying quantum mechanics to the problem of recognizing
wave images emerged at the beginning of the 1970s, when a seminar
devoted to quantum mechanics and image recognition was opened
in the Physics Department of Moscow State University under the
direction of Yu. P. Pyt’ev and this author.

The article by V. G. Danilov, V. P. Maslov, and K. A. Volosov
is directly related to the key issue of creating the component base
of computers, namely, the calculation and design of new technological
methods for the various stages of designing integrated circuits and
other computer elements. Mathematical modeling in this case is
a preliminary stage. Most of the modeling problems can be reduced
to a quasilinear parabolic equation or a system of such equations.

The article suggests new methods for building asymptotic equa-
tions to quasilinear parabolic equations. From the mathematical
view the class of problems considered is characterized by two effects:
localization of a perturbation and the finiteness of the speed with
which the perturbation travels. In other words, the support of the
solution is a compact set or a semibounded set, and the boundary
of the support propagates with a certain speed. At the support
boundary the solution undergoes a weak discontinuity; hence, along
with the problem of constructing the asymptotics in a small param-
eter there emerges the problem of the propagation of the singularity
(the weak discontinuity). The theory developed in the article is
applied to calculating such processes as diffusion, heat conduction,
turbulent filtration, adsorption (desorption), epitaxy, and film flow.
Application of the findings to the various stages of the technological
processes reduces designing time and production costs.

The abundance of basically new material, that is, new methods,
notions, definitions, etc., must have posed certain difficulties in
preparing the manuscript for print. For this reason I would like to
express my sincere gratitude to Mir Publishers for undertaking to
introduce the foreign reader to the achievements in this field of
knowledge. In particular, I would like to thank the staff of the
mathematics editorial office for preparing the Russian version of the
manuscript for translation and the English physics and mathematics
editorial office for the expert translation.

January 1988 Academician V. P. Maslov



1 Design of Computational Media:
Mathematical Aspects

S. M. Avdoshin, V.V. Belov, V.P. Maslov,
and A. M. Chebotarev

1.0 A Brief Survey

In the present article we aim at a solution of certain
problems associated with the architecture and analysis of parallel
programs and flexible manufacturing systems (FMS) for homogeneous
multiprocessor computational systems (CS), which are characteristic
of fifth-generation computers.

These problems constitute examples of optimization problems
containing a natural large parameter proportional to V, the number
of elementary processors in the CS. As a rule, the complexity of the
solution algorithms for these problems increases rapidly with N
(at least like N?). This brings us to the problem of the limiting tran-
sition as N — oo, that is, a limit problem whose solution does not
depend on N and approximates the solution of the initial problem
all the better as IV increases. In some important specific cases this
limit problem can be associated with the Bellman equation [1.1].
As a rule, however, even for smooth initial data the limit equation
has no differentiable solutions (except for a small number of extremely
special problems). Hence, the classical statement of the Cauchy
problem for this equation usually has no meaning. More than that,
the Bellman equation does not even have generalized solutions in the
usual sense. Hence only Pontryagin’s maximum principle applied
to such cases has a clearly defined mathematical meaning. This
principle has been used in solving the corresponding optimization
problems [1.2].

The general approach suggested in this paper to solving optimiza-
tion problems related to multiprocessor computers can also be applied
to optimization problems of an entirely different nature. This ap-
proach is based on the fact that all optimization problems considered
here are “linear” in function spaces whose elements have values in
certain semi-rings. Iere is what this means. Let us consider a func-
tion space in which the common operations of addition and multi-
plication by numbers are replaced with other semi-group operations,
@ and @, related through the distributivity law. For instance,
instead of the sum of two functions we take their supremum, and
instead of the product of a function by a number we take the infimum.
The linearity of equations in such spaces means that, if y; (x) and
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Yy (x), x € X, are solutions, then sup (y; (z), y, (z)) and inEf (1 (), M)
xEX xEX
or inf (y, (z), A), A = const, are also solutions. Next we introduce

X

the cconcept of an “integral” corresponding to a semi-group operation
of the “sum” type, the concept of measure that is additive in this
new sense, and an analog of the scalar product, which makes it
possible to introduce conjugate operators and define functions that
are “generalized” in the new sense. For example, the scalar product
in a space of functions with values in a semi-ring A where the sum
is replaced with min and the product with the common sum, -,
has the form

def
(P1r @)= glei}r(l(cpi(x) + ¢, (2)) = ‘{ P4 (2) Oy (2) dix.

G
In this space, for the Hamilton-Jacobi equation
ou ou

we have the superposition principle for solutions, that is, if y, and
Y, are solutions, then b; ® y; @ A, ® y,, with A; = const =1,2),
are also solutions. This leads to a formula that represents a solution
of the equation in terms of a source, or

ue, )= | k(2 & )Ou (0 de
53]
—min (k (z, &, £)+u, (), (1.0.1)
lex

where & (z, §, 0) =6 (x — ), and 8 (z — &) is understood to be
the functional Iglin B@e—0+o(d)=9@),say, 6§ (x— ) =
gex

lim [(z — )*/el. It is easy to see that k (z, C, t) = min \Z dt,
e—>0 &
where Z is the Lagrangian, and formula (1.0.1) proves to be the well-
known representation of a solution to the Hamilton-Jacobi equation
(*) in the small in terms of a generating function.

The “Fourier transform” in a space of functions with the values
in a semi-ring 4 is the eigenfunction expansion of the translation (or
shift) operator T, that is, Txq (z) = ¢ (z + A); the cigenfunctions
Pu (x) of Tp have the form pz: Tauz = p (z + Az) -— RA 4+ uzx =
WA ® pz, and the corresponding eigenvalues are uA. The “Fourier

transform” of a function ¢ (z) has the form 51|Ju () ® ¢ (z) dz =

&
min (uz -+ ¢ (z)) and in the case at hand coincides with the Legendre
x € X
transform, which is “linear” in this space. It has been established
that if H (p, z, t) is a function homogeneous of degree one in p,
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then the Cauchy problem for equation (x) is also “linear” in the
space of functions with the values in the semi-ring A: © = min,
® = max. The Cauchy problem for the Bellman equation also proves
to be “linear” in appropriate function spaces of functions with values
in a semi-ring A4.

The general differential equation in spaces of functions of a con-
tinuous argument that generalizes both the Bellman equation and
the Hamilton-Jacobi equation is an equation for which the resolving
operator is linear in function spaces with values in the appropriate
semi-rings and whose solution is generalized in the above-mentioned
new sense (that is, is a “linear” continuous functional with respect
to the new “scalar product”). We will call this equation the gener-
alized Hamilton-Jacobi equation and in the discrete case the gener-
alized Bellman equation. For such equations there exists an analog
of Fredholm alternative theorems. For a broad class of problems the
solutions of these equations can be constructed using Pontryagin’s
maximum principle as a basis.

The concept described above makes it possible to determine the
limiting values when N — oo and overcome the difficulty that arises
from the fact that usually the solutions of such problems assume only
two values, 0 and 1. For the sake of comparison we first turn to the
linear case, where the discrete problem converges to a continuous
one. .

Example 1. Suppose a discrete problem is described by the differ-
ence scheme

aitt = Lat, necz, keZ,, (1.0.2)

where L is a linear difference operator with constant coefficients on

an integer lattice, with the initial value a;, a nonzero constant (say, c)

for n > 0 and zero for n << 0. This problem has no limit in the ordin- '
ary sense of the word as k& — oo. Nevertheless, the concept of a gen-

eralized solution introduced by S. L. Sobolev makes it possible to

find the weak limit of the solution to this problem. To this end we

take a family of functions of continuous independent variables,

vp (&, z), t €10, T1, T = const, x € R*, that depends on parameter

h € (0, 1] and is such that

vy, (kh, nh) = ak.

With the initial problem (1.0.2) we associate the problem for
vn (t, 2):

v (t +h, 2) = Lyn (¢, ), Unji—o = 0° (2), t = kh. (1.0.2")

Here L is the natural continuation of L on functions of a continuous

independent variable. For example, if La’;:ZoiaLi, then
1
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Zhv,,, t, z) = 2 c;vp (t, * + ih). The condition & — oo is equivalent
i
to h — 0, since kh < T. Let us assume that on smooth functions

the operator ([7,1)1 converges to the operator el as [ —- oo, lh — ¢,
where L, is a linear differential operator that, as% —0, is approxi-

mate on smooth functions by the operator [Zh — 11/h. Then, if the
initial value v° (x) is a smooth function, the family of functions
vy (lh, x) converges (in C (Ry)) to the solution v (¢, x) of the differen-
tial equation

a

o= LoV Vim0 =1 (2). (1.0.3)
If v® (z) is a discontinuous function, the solution to the difference
problem converges to a solution of the differential equation in the
sense of generalized functions. Indeed, for any smooth finite function
¢ we have

(0n Ik, @), @)= (L)1, @)= @0 (L} ¢)

* def
IT:() (Vos etly ¢) = (e!Lovov Q)= (v (t, z), ®)
def

== 5 ¢ (z)v (¢, x)dr,

where v (¢, z) is a generalized solution to problem (1.0.3).

We have therefore found that the weak limit of the solution to
a difference problem is a generalized solution to the respective limit-
ing equation, to which the initial difference equation converges only
on smooth functions.

Let us now study the analogy between the example just considered
and the solution to the respective discrete optimization problem.

Ezample 2. Consider the process {a*, k = 0, 1, ...} with a
discrete space of states Z X Z, a*: Z X Z —R', and satisfying
the Bellman equation

a*** (m, n) = min {&* (m — 1, n), &* (m, n — 1)},
n,mezZ, kE=0,1, ..., (1.0.4)
and the initial data of the form
0ifn=0,m=>=00rm=0, n>0,

.
+ oo otherwise. (1.0.5)

a® (m, n) :{
Note that this equation is linear in the space of functions with dis-
crete arguments with values in the semi-ring 4 = (R! (J {Hoo},
@ = min, ® = +), where | =0 and 0 = +o00. We may re-
write it in a form quite similar to the one discussed in Example 1:

a**! (m, n) = Lya® (m, n), (1.0.6)
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where the “linear” operator Ly is given by the formula
Lyd*(m, n)= @ ¢;;@d"(m—i, n—7j),
(i,0) €V

cy=1=0, V={0, +1), (+1, 0)},

and the initial value is
Tifrn=0, m=00rm=0,n20,

; (1.0.7)
O otherwise.

a’(m, n) = {
Just as in the linear case, this problem has no limit if we send k&
to co. Nevertheless, the concept of “generalized” solutions makes
it possible, as in the linear case, to obtain the weak limit of problem
(1.0.6), (1.0.7). With problem (1.0.6), (1.0.7) we associate the follow-
ing problem for functions of continuous arguments (z, y) € R* |
{00}, t €10, T], T = const > 0:
up(E4-hy , y)=Lyyun (b, 2, y), t=kh, kcZ, (1.0.6)
Tifx=0,y=00ry=0, 22>0,
— 10 (r ) -

uh(o7 Z, y)*u (l’ l/)* {:) if x#O or y:]EO,

(1.0.7)

k

in sach a manner that w, (kh, mh, nh) = a* (m, n).

The operator Zh,V in the given case acts according to the formula

Lf\;nvuh (tv z, y): min (uh (t7 x'_h'1 y)v Un (t7 Z, y—h))
(1.0.8)

At ¢t = kh the solution to problem (1.0.6"), (1.0.7") assumes the form

up (t, =, y):(Lh,V)kuO (z, y).

Allowing for (1.0.8), we can calculate the right-hand side of this
equation explicitly:
un (b, @, y)= min (' (z—hC, y—hG,)).
Hang)
Let us introduce the “scalar product” for A-valued functions assuming
that

@ W= | 0@ NOY( y)dzdy
®
de

= int{p (2, )+ v (e ) (1.0.9)

Now we wish to calculate the weak limit, as & —0, of the solution
to problem (1.0.6"), (1.0.7") on smooth functions with respect to the



14 S. M. Avdoshin et al.

“scalar product” introduced above (this, as noted earlier, is equiv-
alent to finding the limit as k tends to o). Suppose £ — oo, kh —,,
ty €10, T1. Then for every smooth function ¢ (z, y) we have

W (ter %, ¥y (%, Yo = (Lnv)u (2, 1), @ (2, ¥))a
=@ (z, y), (LEv)o @, )

where operator ZZ,V is the conjugate of Eh,V with{ respect to the
scalar product ( , )g introduced above.
It can easily be verified that

i)' @@ 9= min {g(e+hty y+ht).
=i 12/—:
Hence
(up (to, , ¥)» @ (=, Yo
=@ (@ ) min {e(@+hE;, y=hi)he
uer,

We denote by u, (t), z, y) the weak limit of the solution to problem
(1.0.6"), (1.0.7"): uq (to, z, y) = s — lim uy, (¢, *, y), where s is
h—>0

a fixed vector function whose meaning will be defined later on
Sending % to 0 and kk to t, in the last equation, we get

(U (20r Z, ¥)s @ (2, Y)a
. %}PW’I (to, 2, ¥), @ (z, Yeo:

= (u(z, y), min {o @+, y+m)p. (1.0.10)
Y

We will call the generalized function u, (¢,, z, y) defined by (1.0.10)

a generalized solution to the limiting generalized Hamilton-Jacobi

equation to which Eq. (1.0.6") converges on smooth functions. This

limiting equation has the form

ou - { du . du 3
- oz ? ay J*

The solution to this equation can be obtained by employing Pontrya-
gin’s maximum principle [1.2, 1.3].

In contrast to the linear case, the statement of smooth initial
data for discrete optimization problems has no meaning, as a rule.
For this reason a study of the limiting equation of an optimization
problem is justified only in constructing generalized solutions to this
equation in the above sense.
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The example of the discrete optimization problem (1.0.4), (1.0.5)
is closely related to an analysis of the activity of homogeneous
multiprocessor computational systems (see Sec. 1.2). _When the
number of processors, /N, in such a system grows, that_1s, N — oo
(h ~ 1/N —0), the support of the generalized solution (1.0.10)
to the limiting Hamilton-Jacobi equation determines, at each
moment ¢t > 0, the set of processors carrying out calculations at
time ¢.

The suggested approach enables considering generalized solutions
for general optimization problems, too. But here we will give a brief
description of the properties of discrete optimization problems that
arise when the operation of homogeneous computational systems is
analyzed.

It appears that all such problems can be studied using solutions
(generalized solutions in the limiting case of N — oo) to the gener-
alized Hamilton-Jacobi equation in the space of functions with
values in semi-rings. It has also been found that in problems related
to the architecture of multiprocessor homogeneous CS, the range of
the sought functions has the structure of a crystal lattice with certain
symmetry properties. For instance, in the simplesi case of a matrix
processor, a draft of which was proposed in 1982 by a group of US
scientists [1.4-1.7], the common Bravais lattice [1.8] serves as such
a range.

For optimization problems connected with the estimation of the
effectiveness of parallel programs, a discrete lattice with nontrivial
symmetry groups (a nonempty set of nonelementary translations)
serves as a natural range of independent variables of the functions
involved in the problems. The symmetry of such lattices is uniquely
determined by the text of the program, while the execution time of
the program operators is determined by the values of the coefficients
of the appropriate system of generalized Hamilton-Jacobi equations
(systems of discrete generalized Bellman equations).

In optimization problems related to the operation of CS, these
equations are usually nonhomogeneous steady-state equations (the
right-hand side of the equations describes the interaction of the set
of processors in a CS with the external memory of the system). The
solution to these equations is found as the limit, as V — co, of the
solutions of appropriate evolutionary nonhomogeneous equations.
Solving the latter can be reduced to solving homogeneous equations,
using an analog of Duhamel’s principle.

The difference between this case and the common linear case lies
in the following: although for a steady-state problem there is no
limiting generalized Hamilton-Jacobi equation, in the limit the
corresponding nonstationary problem can be reduced to the evolu-
tionary generalized Hamilton-Jacobi equation. This makes it pos-
sible, by means of Duhamel’s principle, to write the limiting problem
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in terms of generalized solutions of a certain Cauchy problem for the
generalized Hamilton-Jacobi equation. We call such a problem a
stabilization one. Thus, a generalized solution of a stabilization
Cauchy problem is the limit (in the new sense of the word), as t — oo,
of the solution to the Cauchy problem for the generalized Hamilton-
Jacobi equation.
Let us illustrate the aforesaid with two examples. In the first
example we will consider a nonhomogeneous steady-state scalar
equation on a simple one-dimensional lattice, so as to demonstrate
how Duhamel’s principle can be employed. In the second example
we will study an optimization problem on a two-dimensional discrete
lattice with a nontrivial symmetry group.
Lzample 3. Let us consider the simplest one-dimensional “tracing”
problem, the problem of finding the shortest route [1.9-1.11] on a
discrete lattice Q, = {x = 2z, = ne, n = 0, +1, .. .} with spacing
€, where & is a positive parameter. The following relation exists for
the length s, (n) of the shortest route at point n:
Se (n) = min {s, (n — 1) + ecy, s, (n + 2)
+ecy, Fo(n)}, ne€Z, (1.0.41)
where ¢, and ¢, are constants, and %, (n) = g (ne), with g (z),
z € R, a continuous function bounded below.
Problem (1.0.11) is a steady-state problem with a right-hand side
equal to % . (n) and is linear in the space of functions with values
in the semi-ring
A:{R1U{i_oo}7 ¢ = min, ®:+}7

where O = 400, and 1 = 0. We rewrite it in the form
Se (n) = Lese (n) © 7, (n)

where operator L, acts according to the rule

Lese (n) = @ ¢, (v) © s¢ (n —v),

vEV
with V = {v; =1, v, = —2}, ¢, (1)) = ecy, and ¢, (v,) = ec,.
With this problem we associate the following problem for the
family of functions of a continuous variable u, (), x € R!, & € 0, 11:

e (¥) = Lous (z) ® g (2), 1.0.11")

where operator L, is defined as follows:
Leug (r) = min {u, (x — &) + ecy, u, (x + 2¢) -+ €Cy }.

Obviously, u, (ne) is the solution to the initial discrete problem
(1.0.11). The solution to problem (1.0.11") is the limit, as ¢ — oo,
of the solution to the evolutionary nonhomogeneous equation

felt+e, o) =Lof (t,2) ® g(x), t=ke, k=0,1, ...
(1.0.12)



