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Preface

Complex Analysis has successfully maintained its place as the standard
elementary text on functions of one complex variable. There is, never-
theless, need for a new edition, partly because of changes in current mathe-
matical terminology, partly because of differences in student preparedness
and aims.

There are no radical innovations in the new edition. The author still
believes strongly in a geometric approach to the basies, and for this reason
the introductory chapters are virtually unchanged. In a few places,
throughout the book, it was desirable to clarify certain points that ex-
perience has shown to have been a source of possible misunderstanding or
difficulties. Misprints and minor errors that have come to my attention
have been corrected. Otherwise, the main differences between the second
and third editions can be summarized as follows:

1. Notations and terminology have been modernized, but it did not
seem necessary to change the style in any significant way.

2. In Chapter 2 a brief section on the change of length and area under
conformal mapping has been added. To some degree this infringes on the
otherwise self-contained exposition, for it forces the reader to fall back on
calculus for the definition and manipulation of double integrals. The
disadvantage is minor.

3. In Chapter 4 there is a new and simpler proof of the general form of
Cauchy’s theorem. It is due to A. F. Beardon, who has kindly permitted
me to reproduce it. It complements but does not replace the old proof,
which has been retained and improved.

4. A short section on the Riemann zeta function has been included.
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This always fascinates students, and the proof of the functional equation
illustrates the use of residues in a less trivial situation than the mere
computation of definite integrals.

5. Large parts of Chapter 8 have been completely rewritten. The
main purpose was to introduce the reader to the terminology of germs and
sheaves while emphasizing all the classical concepts. It goes without
saying that nothing beyond the basic notions of sheaf theory would have
been compatible with the elementary nature of the book.

6. The author has successfully resisted the temptation to include
Riemann surfaces as one-dimensional complex manifolds. The book
would lose much of its usefulness if it went beyond its purpose of being
no more than an introduction to the basic methods and results of complex
function theory in the plane.

It is my pleasant duty to thank the many who have helped me by
pointing out misprints, weaknesses, and errors in the second edition.
I am particularly grateful to my colleague Lynn Loomis, who kindly let
me share student reaction to a recent course based on my book.

Lars V. Ahlfors
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1 COMPLEX NUMBERS

1. THE ALGEBRA OF COMPLEX NUMBERS

It is fundamental that real and complex numbers obey the same
basic laws of arithmetic. We begin our study of complex func-
tion theory by stressing and implementing this analogy.

1.1. Arithmetic Operations. From elementary algebra the
reader is acquainted with the smaginary unit ¢ with the property
1?2 = —1. If the imaginary unit is combined with two real num-
bers «, B by the processes of addition and multiplication, we
obtain a complex number a + i8. « and B are the real and
imaginary part of the complex number. If &« = 0, the number is
said to be purely tmaginary; if B = 0, it is of course real. Zero is
the only number which is at once real and purely imaginary.
Two complex numbers are equal if and only if they have the same
real part and the same imaginary part.

Addition and multiplication do not lead out from the system
of complex numbers. Assuming that the ordinary rules of
arithmetic apply to complex numbers we find indeed

(1) (@+18) + (v +48) = (@ + ) + (B + )
and
2 (e +B)(v + 18) = (ay — B8) + i(ad + B¥).

In the second identity we have made use of the relation 72 = —1.
It is less obvious that division is also possible. We wish to

1
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show that (a 4+ ¢8)/(y + 78) is a complex number, provided that v +
16 # 0. If the quotient is denoted by = + ¢y, we must have

a4+ 18 = (v + 28)(z + iy).
By (2) this condition can be written
a8 = (yz — &y) + i(dz + vy),

and we obtain the two equations

o= yr — oy
B =dx + vy.
This system of simultaneous linear equations has the unique solution
g = &Y+ BS
.y2 + 82
et )
'Y2 + 62

for we know that v2 + 8% is not zero. We have thus the result
a+i8 oy + B By — ab
@) ‘Y+’55_72+52+272+62

Once the existence of the quotient has been proved, its value can be
found in a simpler way. If numerator and denominator are multiplied
with v — 74, we find at once

at B _ (a+18)(y —i8) _ (av + B9) +i(By — ad)

v+ 48 (v +d)(y — i) v+ &
As a special case the reciprocal of a complex number 0 is given by
AR 3
a+if o+ B2

We note that ¢* has only four possible values: 1, 4, —1, —i. They
correspond to values of n which divided by 4 leave the remainders 01,
2,8.

EXERCISES
1. Find the values of

y \2
a+20n g (FR) a+ora-an
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2. If z = = + 1y (z and y real), find the real and imaginary parts of

R ! z—1 1
. LAl s
2 2 z+1’ 22
3. Show that
. 9\ 3 . 6
(—1 4_-21\/3_) S (ilgm/e.) g

for all combinations of signs.

1.2. Square Roots. We shall now show that the square root of a
complex number can be found explicitly. If the given number is a + 8,
we are looking for a number z + ¢y such that

(x + )2 = a4+ B
This is equivalent to the system of equations
2 —y =«
@) 2zy = B.
From these equations we obtain
(x2 + y2)2 — (1;2 s y2)2 _|_ 4x2yz — a2 + Bﬂ.
Hence we must have
o= VI TP,
where the square root is positive or zero. Together with the first equa~
tion (4) we find
. 2 = ja+ VI TH)
y? = }(—a + Vi + B
Observe that these quantities are positive or zero regardless of the sign
of a.

The equations (5) yield, in general, two opposite values for x and two
for y. But these values cannot be combined arbitrarily, for the second
equation (4) is not a consequence of (5). We must therefore be careful
to select z and y so that their product has the sign of 8. This leads to the
general solution

provided that 8 % 0. ForB = 0 the valuesare + Vaifa = 0, iV —a



