
Energy-Efficient Electric Motors

Selection and Application

John C. Andreas

E8362292

Energy-Efficient Electric Motors

SELECTION AND APPLICATION

JOHN C. ANDREAS

Electric Motor Consultant Retired Vice-President of Product Development Electric Motor Division, Gould Inc.

Library of Congress Cataloging in Publication Data

Andreas, John C., [date]
Energy-efficient electric motors.

(Electrical engineering and electronics; 15)

Bibliography: p.

Includes index.

1. Electric motors. I. Title. II. Series.

TK2511.A55 621.46 '2

82-2354

ISBN 0-8247-1786-4

AACR2

COPYRIGHT © 1982 by MARCEL DEKKER, INC. ALL RIGHTS RESERVED

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York 10016

Current printing (last digit):

10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Energy-Efficient Electric Motors

ELECTRICAL ENGINEERING AND ELECTRONICS

walking.

A Series of Reference Books and Textbooks

Editors

Marlin O. Thurston
Department of Electrical
Engineering
The Ohio State University
Columbus, Ohio

William Middendorf
Department of Electrical
and Computer Engineering
University of Cincinnati
Cincinnati, Ohio

- 1. Rational Fault Analysis, edited by Richard Saeks and S. R. Liberty
- 2. Nonparametric Methods in Communications, edited by P. Papantoni-Kazakos and Dimitri Kazakos
- 3. Interactive Pattern Recognition, Yi-tzuu Chien
- 4. Solid-State Electronics, Lawrence E. Murr
- Electronic, Magnetic, and Thermal Properties of Solid Materials, Klaus Schröder
- 6. Magnetic-Bubble Memory Technology, Hsu Chang
- 7. Transformer and Inductor Design Handbook, Colonel Wm. T. McLyman
- 8. Electromagnetics: Classical and Modern Theory and Applications, Samuel Seely and Alexander D. Poularikas
- 9. One-Dimensional Digital Signal Processing, Chi-Tsong Chen
- 10. Interconnected Dynamical Systems, Raymond A. DeCarlo and Richard Saeks
- 11. Modern Digital Control Systems, Raymond G. Jacquot
- 12. Hybrid Circuit Design and Manufacture, Roydn D. Jones
- 13. Magnetic Core Selection for Transformers and Inductors: A User's Guide to Practice and Specification, *Colonel Wm. T. McLyman*
- 14. Static and Rotating Electromagnetic Devices, Richard H. Engelmann
- Energy-Efficient Electric Motors: Selection and Application, John C. Andreas

Other Volumes in Preparation

To my wife Ruth E. Andreas for her faith and encouragement

Preface

The number of electric motors in the 1- to 125-hp range was approximately 70 million in 1977 and is increasing 6 percent per year according to a recent study by the U.S. Department of Energy. This study also noted that 53 to 58 percent of the electric energy generated is consumed by electric-motor-driven systems. This presents us with an opportunity to save considerable energy by wisely selecting motors and the devices they drive. However, it should be recognized that the electric motor is a device for converting electrical energy to rotating mechanical energy. The only power consumed by the electric motor is the electrical and mechanical energy losses within the motor, and the balance of the electrical energy is transferred as mechanical energy to some driven device such as a pump, fan, or conveyor. Since the motor losses are 5 to 25 percent of the input power, it is important to consider the complete system, including the electric motor, when determining system efficiency and potential energy conservation.

Modern motors are precisely designed, taking advantage of computer-derived optimum designs, high-quality materials, and improved manufacturing technology. Hence, for many years the trend was toward smaller and lighter motors in order to lower cost, and no significant attention was given to efficiency and the power factor beyond the levels required to achieve allowable temperatures.

With the increasing cost of electric power, in 1975 motor manufacturers began addressing the problem of improving electric motor efficiencies to levels that would represent significant savings in energy.

Coincident with the trend toward smaller motors, many users

and original equipment manufacturers have been choosing to purchase the lowest-first-cost motor without considering the power factor and efficiency. Similarly, many textbooks and handbooks on electric motors discuss in great detail the design and performance characteristics of electric motors and the characteristics of various types of motor loads and how to match the motor to the load requirements. However, efficiency, the power factor, energy costs, and life-cycle costing have not been considered as major factors in the selection of an electric motor in most applications.

In many cases, electric motors have been selected and applied by engineers or other personnel who have a limited knowledge of electric motors, particularly a lack of understanding of the power factor, efficiency, and associated energy economies.

Today, with the high cost of electrical energy and the continuing trend toward higher costs, electric motors should be applied and selected on a life-cycle cost basis, including such factors as first cost, energy efficiency, the duty cycle, operating time, and energy costs.

My goal in this book is to provide guidelines for selecting and applying electric motors on an energy conservation and life-cycle cost basis. Particular emphasis is given to both single-phase and three-phase motors in the 1- to 125-hp range since this is the range that offers the maximum opportunities for energy savings. It is my intention to present these guidelines in a format that can be understood and effectively used by all personnel responsible for the application, selection, and procurement of electric motors, motor controls, and motor-driven products.

John C. Andreas

8362292

Contents

	Pref	ace	v
1	Indu	action Motor Characteristics	1
	1.1	Three-Phase Induction Motors NEMA Design B Motors NEMA Design A Motors NEMA Design C Motors NEMA Design D Motors Wound Rotor Induction Motors Multispeed Motors Single-Phase Induction Motors Capacitor Start Motors Two-Value Capacitor Motors Permanent Split Capacitor Motors	1 7 7 8 11 15 17 20 25
2	Ene	rgy-Efficient Motors	32
	2.1 2.2 2.3	1 33	32 35 35 36 37 39 39
			vii

viii	Contents

	2.4 2.5	What Is an Energy-Efficient Motor? Efficiency Determination	42 48
	2.5	IEEE Standard 112-1978	50
		IEC Publication 34-2	51
		JEC Standard 37	52
		Comparison of Efficiencies Determined by	
		Preferred Methods	53
		Testing Variance	53
	2.6	Motor Efficiency Labeling	54
3	Elec	tric Power Costs	58
	3.1	Industry Energy Trends	58
	3.2		58
	3.3		61
		Demand Charge	61
		Power Factor Charge	66
		Energy Consumption Charge	67
		Fuel Adjustment Charge	67
		Equipment Rental	68
	3.4	Summary	68
4	The	Power Factor	71
	4.1	What Is the Power Factor?	71
	4.2	Why Raise the Power Factor?	73
	4.3	How to Improve the Power Factor	74
		Where to Locate Capacitors	81
	4.4	Power Factor Motor Controllers	85
		Single-Phase Motors	86
		Three-Phase Motors	88
5	Apr	olication of Electric Motors	93
7		General Discussion	93
	5.1	Energy-Efficient Motors	94
	5 2	Varying Duty Applications	100
		Voltage Variation	102
	5.4	•	103
	5.5	Overmotoring	113
	\mathcal{I}	O Termiotornia	

6		ction Motors and Adjustable-Speed e Systems	116
	6.1	Energy Conservation	116
	6.2		119
		Multispeed Motors	119
		Adjustable-Speed Pulley Systems	120
		Mechanical Adjustable-Speed Systems	122
		Eddy Current Adjustable-Speed Drives	125
		Fluid Drives	136
		AC Variable-Frequency Drives	141
		Wound Rotor Motor Drives with Slip Loss Recovery	153
	6.3	Application of Adjustable-Speed Systems to Fans	158
	6.4	Application of Adjustable-Speed Systems to Pumps	167
7	Ecor	nomics of Energy-Efficient Motors and Systems	175
	7.1	General Review	175
	7.2	Life Cycle	176
	7.3		178
	7.4	T(0) - F 1 F 1	184
	7.5	Present Value or Present Worth Method with	
		Constant Power Costs	186
	7.6	Present Value or Present Worth Method with	
		Increasing Power Costs	187
	7.7		189
	Sele	cted Readings	195
	Inde	ex	196

Induction Motor Characteristics

1.1 THREE-PHASE INDUCTION MOTORS

In the integral horsepower sizes, i.e., above 1 hp, three-phase induction motors of various types drive more industrial equipment than any other means. The most common three-phase (polyphase) induction motors fall within the following major types:

NEMA* design B: Normal torques, normal slip, normal locked amps

NEMA design A: High torques, low slip, high locked amps

NEMA design C: High torques, normal slip, normal locked amps

NEMA design D: High locked-rotor torque, high slip

Wound rotor: Characteristics depend on external resistance

Multispeed: Characteristics depend on design—variable torque, constant torque, constant horsepower

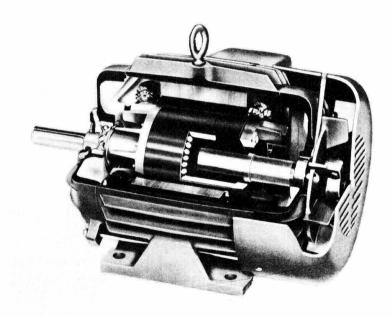
There are many specially designed electric motors with unique characteristics to meet specific needs. However, the majority of needs can be met with the preceding motors.

NEMA Design B Motors

The NEMA design B motor is the basic integral horsepower motor. It is a three-phase motor designed with normal torque and normal starting current and generally has a slip at the rated load of less than 4 percent. Thus the motor speed in revolutions per minute is 96 percent or more

^{*}National Electrical Manufacturers Association.

of the synchronous speed for the motor. For example, a four-pole motor operating on a 60-Hz line frequency has a synchronous speed of 1800 rpm or a full-load speed of


$$1800 - (1800 \times \text{slip}) = 1800 - (1800 \times 0.4)$$

= $1800 - 72$
= 1728 rpm

or

$$1800 \times 0.96 = 1728 \text{ rpm}$$

In general, most three-phase motors in the 1- to 125-hp range have a slip at the rated load of approximately 3 percent, or in the case of four-pole motors, a full-load speed of 1745 rpm. Figure 1.1 shows the typical construction for a totally enclosed, fan-cooled NEMA design B motor with a die-cast aluminum single-cage rotor.

Figure 1.2 shows the typical speed-torque curve for the NEMA design B motor. This type of motor has moderate starting torque, a

Fig. 1.1 NEMA design B totally enclosed, fan-cooled polyphase induction motor. (Courtesy of Gould Inc., Electric Motor Division, St. Louis.)

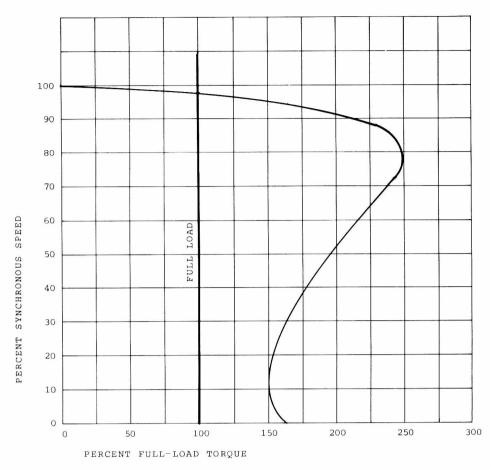


Fig. 1.2 NEMA design B motor speed-torque curve.

pull-up torque exceeding the full-load torque, and a breakdown torque (or maximum torque) several times the full-load torque. Thus it can provide starting and smooth acceleration for most loads and in addition can sustain temporary peak loads without stalling. The NEMA performance standards for design B motors are shown in Table 1.1, Table 1.2, and Table 1.3. There are no established standards for the efficiency or the power factor of NEMA design B motors. However, NEMA has established standards for testing and labeling motors; these standards are discussed in detail in Chap. 2.

Table 1.1 Locked-Rotor Torque of NEMA Design A and B Motors a,b

Synchronous			speed, 60 Hz	
hp	3600 rpm	1800 rpm	1200 rpm	900 rpm
1	_	275	170	135
1.5	175	250	165	130
2	170	235	160	130
3	160	215	155	130
5	150	185	150	130
7.5	140	175	150	125
10	135	165	150	120
15	130	160	140	125
20	130	150	135	125
25	130	150	135	125
30	130	150	135	125
40	125	140	135	125
50	120	140	135	125
60	120	140	135	125
<i>7</i> 5	105	140	135	125
100	105	125	125	125
125	100	110	125	120
150	100	110	120	120
200	100	100	120	120
250	70	80	100	100

^aSingle-speed, polyphase, squirrel-cage, integral horsepower motors with continuous ratings (percent of full-load torque). ^bFor other speeds and ratings, see NEMA Standard MG1-12.37. *Source:* Reprinted by permission from NEMA Standards Publication No. MG1-1978, *Motors and Generators*, copyright 1978 by the National Electrical Manufacturers Association.

Table 1.2 Breakdown Torque of NEMA Design A and B Motors^{a,b}

	Synchronous speed, 60 Hz			
hp	3600 rpm	1800 rpm	1200 rpm	900 rpm
1	_	300	265	215
1.5	250	280	250	210
2	240	270	240	210
3	230	250	230	205
5	215	225	215	205
7.5	200	215	205	200
10	200	200	200	200
15	200	200	200	200
20	200	200	200	200
25	200	200	200	200
30	200	200	200	200
40	200	200	200	200
50	200	200	200	200
60	200	200	200	200
<i>7</i> 5	200	200	200	200
100	200	200	200	200
125	200	200	200	200
150	200	200	200	200
200	200	200	200	200
250	175	175	175	175

^aSingle-speed, polyphase, squirrel-cage, integral horsepower motors with continuous ratings (percent of full-load torque). ^bFor other speeds and ratings, see NEMA Standard MG1-12.38. *Source:* Reprinted by permission from NEMA Standards Publication No. MG1-1978, *Motors and Generators*, copyright 1978 by the National Electrical Manufacturers Association.

Table 1.3 Locked-Rotor Current of NEMA Design B, C, and D Motors^{a,b}

hp	Locked- rotor current (A) ^c	NEMA design letter	Code letter
	\/		
1	30	B, D	N
1.5	40	B, D	M
2	50	B, D	L
3	64	B, C, D	K
5	92	B, C, D	J
7.5	127	B, C, D	H
10	162	B, C, D	H
15	232	B, C, D	G
20	290	B, C, D	G
25	365	B, C, D	G
30	435	B, C, D	G
40	580	B, C, D	G
50	725	B, C, D	G
60	870	B, C, D	G
<i>7</i> 5	1085	B, C, D	G
100	1450	B, C, D	G
125	1815	B, C, D	G
150	2170	B, C, D	G
200	2900	B, C	G
250	3650	В	G

 $^{^{\}mathrm{a}}$ Three-phase, 60-Hz, integral horsepower, squirrel-cage induction motors rated at 230 V.

Source: Reprinted by permission from NEMA Standards publication No. MG1-1978, Motors and Generators, copyright 1978 by the National Electrical Manufacturers Association.

^bFor other horsepower ratings, see NEMA Standard MG1-12.34.

^cThe locked-rotor current for motors designed for voltages other than 230 V shall be inversely proportional to the voltage.