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Meares Glacier, Unikwak Bay, Prince William Sound, Alaska. The flow of the glacier ice is an ex-
ample of a non-Newtonian fluid in motion. ( Photograph by Austin Post, University of Washington.)



PREFACE

This book is intended as a text for a first course in fluid mechanics offered
to engineering students. We feel that an economy of time and effort has
been achieved by the arrangement and selection of subject matter as pre-
sented. Increased needs and interests in presenting the various engineering
sciences have encouraged us to consider the following objectives:

1. To introduce vector field operations and theorems early in the text, and
use these where they confer advantages with respect to brevity and
generality of formulations.

2. To preserve a consistent method of deriving control-volume equations
from corresponding system equations.

3. To emphasize the need of constitutive relations as well as the basic
equations of fluid mechanics in the solution of physical problems.

The book begins with an introduction to basic definitions, field con-
cepts, and pertinent field theorems. Chapters 2 through 6 present basic
laws such as conservation of matter, momentum, and energy as well as the
concept of state of stress and its relation to forces in a fluid field. Chapter 7
discusses the motion of an ideal fluid, while Chapter 8 introduces a sim-
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plified approach to the solution of problems through an introduction to
dimensional analysis and similarity. The latter chapter also presents the
idealization of one-dimensional flows and their utility in solving simple
fluid flow problems of engineering relevance.

The remainder of the text is concerned with some beginning concepts
of turbulent and boundary-layer flows. Fluid machinery, controls, and
instrumentation have not been included except as examples and assigned
problems. The coverage of fluid statics, dimensional analysis, and simplified
frictional flows has been reduced relative to that found in existing texts.

The text includes more material than would be covered normally in a
course of three semester hours. Chapters | through 6 would be a necessary
part of any elementary course in fluid mechanics presented from a vector
point of view. Since there is little interdependence of Chapters 7, 8, and 9,
these may be used to satisfy a given course objective.

The text is written for students who have had courses in vectorial
mechanics and thermodynamics. A number of examples are included and
these should be considered as an essential part of the presentation. There
are adequate problems and self-study questions at the end of each chapter
to provide different assignments for several semesters.

The authors wish to acknowledge with gratitude the assistance given
to them by the faculty and administration of their college. Special apprecia-
tion is due to Dr. Daniel F. Jankowski, a colleague, for valuable assistance
and suggestions, and Dean Lee P. Thompson for continued encouragement
and support. Any shortcomings of this work are due entirely to the authors.

Theodore Allen Jr.
Richard L. Ditsworth
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curl operator

diameter

divergence operator

laplacian operator

hydraulic diameter

material derivative operator

surface-roughness height

component of longitudinal
rates of strain

exponential

energy (specific quantity)

modulus of elasticity

friction factor

body force (specific quantity)

surface force

wall force

gravitational force per mass

gradient operator
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hy, head loss R function of r only
h specific enthalpy dS differential surface-area
H moment of momentum vector
i,j k unit vectors in x, y, z S surface-area magnitude
directions, respectively So slope
K, loss coeflicient $ () entropy (specific quantity)
dl differential line vector t time
/ mixing length t unit tangent vector
L, m,n direction cosines T absolute temperature
L length T, stagnation temperature
Lise choking length for Fanno U (u) internal energy (specific
flow quantity)
Lt transition length VeV, V. components of velocity in
m mass X, 0,z
m mass rate of flow V., Vo, V. components of velocity in
M, moment of body forces r,0,z
Mg moment of surface forces ¥ volume flow rate
n outward normal unit vector ¥ volume
to an area Ve shearing stress velocity
n roughness parameter \4 velocity
n flow-behavior index 14 time-mean average speed
N, Cauchy number v time-fluctuating speed
Ny Euler number Vsa space-average velocity
Ny Froude number w work
Ny Mach number AW
Ng Reynolds number : rate of shaft work
Ny Strouhal number i
4 pressure X, ¥,z spatial coordinates
Po isentropic pressure stagnation Yis laminar sublayer thickness
Ap, pressure loss due to friction z z coordinate of centroid of
p* reference pressure at N,, = | an area
P perimeter y specific-heat ratio
P (p) linear momentum vector Vi component of rate of shear
(specific quantity) strain
q rate-of-heat-transfer vector r circulation
per area 1) boundary-layer thickness
quantity of heat transfer o* boundary-layer-displacement
r, 0,z cylindrical coordinates thickness
r position vector A finite quantity or change of a
Ry hydraulic radius quantity
R radius &, 8. &, unit vectors in cylindrical
R specific gas constant coordinates
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XV

p
Po

defined nondimensional
variable

plastic viscosity

function of 0 only

thermal conductivity

absolute viscosity

kinematic viscosity

mass density

isentropic stagnation density

normal stress

mean bulk stress

shearing stress

yield shear stress; also, wall
shear stress

velocity potential

specific body-force potential

stream function
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angular acceleration
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be
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approximately equal

time-mean average (used
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variable in turbulent flow

absolute value

integration over a closed
surface S

integration around a closed
path C in direction shown

order of magnitude

summation
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1
BASIC DEFINITIONS
AND INTRODUCTION
TO FIELD CONCEPTS

1.1 Introduction

A basic knowledge of fluid mechanics is essential to engineers and applied
scientists because they will likely become involved directly or indirectly in
problems involving the flow of fluids. A diversity of application is evident in
the following list of prediction and design activities associated with fluids
in motion:

aerodynamic surfaces for desired lift

structural surfaces to withstand temperatures and forces of a fluid
propulsion systems

energy conversion systems

transport of fluids

bioengineering

fluid control systems

fluid computers
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climatology
oceanography

Although these examples are by no means exhaustive, they do serve to estab-
lish the varied applications of a single fascinating discipline.

The study begins with some basic definitions and concepts used to
represent the observed behavior of fluids; emphasis is placed on the physical
meaning of each representation made in mathematical language.

1.2 Fluids and Continuum Concepts

A fluid is defined as any substance deforming continuously when subjected
to a shear stress regardless of how small the shear stress may be. This means
that fluids will “flow” when subjected to a shear stress; and, conversely,
flowing fluids will generally exhibit the presence of shear stresses. (A detailed
discussion of stresses is deferred until Chapter 3.) It is of interest to note the
difference between a fluid and a solid deformed in the elastic range. A solid
deformed by a shear stress is capable of resisting deformation within limits
by generating an internal stress proportional to the deformation. If the ex-
ternally applied shear stress is not too great (so that it does not exceed the
limit of elastic behavior for the material), then the internal stress developed
can become large enough to equalize the external stress. In such a case defor-
mation ceases; that is, the solid does not deform continuously. The above
definition could be used as a criterion to distinguish fluids from ““nonfluids”
by experiment.

Since this study will not consider fluid behavior from the point of view
of kinetic theory, a conceptual model is needed that can be used in a physical
as well as a mathematical sense. This model is referred to as the continuum.
Instead of defining a continuum at the outset, a hypothetical experiment is
proposed. Consider a rather large and finite region in a fluid whose mass is
not uniformly distributed in a given space, and let this region be completely
bounded by a spatial volume ¥;. Next imagine a point to be fixed in position
inside this volume. The density p, of the fluid inside this space may be thought
of as simply the mass m; of this fluid divided by ¥,. Such a density would
obviously be a gross or average description. At one instant of time one may
imagine taking successively smaller regions (thatis, ¥, > ¥, > ¥, etc.) with
each region still surrounding the point but lying wholly inside the previous
region, as shown in Fig. 1.1. As sample size is decreased, one would witness
an approach to a limiting value because the sample would tend to become
more uniform in mass distribution. After reaching a certain volume ¥, any
reduction in the sample size beyond this value would yield fluctuations in the
calculated value of the gross density. If ¥ were permitted to approach zero,
i.e., reduced to the point it surrounds, the density might approach a very



