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Preface

One of our goals in writing this book has been to present the theory of
analytic functions with as little dependence as possible on advanced con-
cepts from topology and several-variable calculus. This was done not only
to make the book more accessible to a student in the early stages of his
mathematical studies, but also to highlight the authentic complex-variable
methods and arguments as opposed to those of other mathematical areas.
The minimum amount of background material required is presented, along
with an introduction to complex numbers and functions, in Chapter 1.

Chapter 2 offers a somewhat novel, yet highly intuitive, definition of
analyticity as it applies specifically to polynomials. This definition is
related, in Chapter 3, to the Cauchy-Riemann equations and the concept of
differentiability. In Chapters 4 and 5, the reader is introduced to a sequence
of theorems on entire functions, which are later developed in greater
generality in Chapters 6-8. This two-step approach, it is hoped, will enable
the student to follow the sequence of arguments more easily. Chapter 5 also
contains several results which pertain exclusively to entire functions.

The key result of Chapters 9 and 10 is the famous Residue Theorem,
which is followed by many standard and some not-so-standard applications
in Chapters 11 and 12.

Chapter 13 introduces conformal mapping, which is interesting in its
own right and also necessary for a proper appreciation of the subsequent
three chapters. Hydrodynamics is studied in Chapter 14 as a bridge
between Chapter 13 and the Riemann Mapping Theorem. On the one
hand, it serves as a nice application of the theory developed in the previous
chapters, specifically in Chapter 13. On the other hand, it offers a physical
insight into both the statement and the proof of the Riemann Mapping
Theorem.
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In Chapter 15, we use “mapping” methods to generalize some earlier
results. Chapter 16 deals with the properties of harmonic functions and the
related theory of heat conduction. -

A second goal of this book is to give the student a feeling for the wide
applicability of complex-variable techniques even to questions which ini-
tially do not seem to belong to the complex domain. Thus, we try to impart
some of the enthusiasm apparent in the famous statement of Hadamard
that “the shortest route between two truths in the real domain passes
through the complex domain.” The physical applications of Chapters 14
and 16 are good examples of this, as are the results of Chapter 11. The
material in the last three chapters is designed to offer an even greater
appreciation of the breadth of possible applications. Chapter 17 deals with
the different forms an analytic function may take. This leads directly to the
Gamma and Zeta functions discussed in Chapter 18. Finally, in Chapter
19, a potpourri of problems—again, some classical and some novel—is
presented and studied with the techniques of complex analysis.

The material in the book is most easily divided into two parts: a first
course covering the material of Chapters 1-11 (perhaps including parts of
Chapter 13), and a second course dealing with the later material. Alterna-
tively, one seeking to cover the physical applications of Chapters 14 and 16
in a one-semester course could omit some of the more theoretical aspects of
Chapters 8, 12, 14, and 15, and include them, with the later material, in a
second-semester course. -+

The authors express their thanks to Ms. Barbara Brown, who diligently
reviewed the manuscript and made many useful suggestions. We are also
indebted to the staff of Springer-Verlag Inc. for their careful and patient
work in bringing the manuscript to its present form.

J.B.
* D.J.N.
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Chapter 1

The Complex Numbers

Introduction

Numbers of the form a + b\/_——l , where a and b are real numbers—what
we call complex numbers—appeared as early as the 16th century. Cardan
(1501-1576) worked with complex numbers in solving quadratic and cubic
equations. In the 18th century, functions involving complex numbers were
found by Euler to yield solutions to differential equations. As more manip-
ulations involving complex numbers were tried, it became apparent that
many problems in the theory of real-valued functions could be most easily
solved using complex numbers and functions. For all their utility, however,
complex numbers enjoyed a poor reputation and were not generally consid-
ered legitimate numbers until the middle of the 19th century. Descartes, for
example, rejected complex roots of equations and coined the term
“imaginary” for such roots. Euler, too, felt that complex numbers “exist
only in the imagination” and considered complex roots of an equation
useful only in showing that the equation actually has no solutions.

The wider acceptance of complex numbers is due largely to the geomet-
ric representation of complex numbers which was most fully developed and
articulated by Gauss. He realized it was erroneous to assume “that there
was some dark mystery in these numbers.” In the geometric representation,
he wrote, one finds the “intuitive meaning of complex numbers completely
established and more is not needed to admit these quantities into the
domain of arithmetic.”

Gauss’ work did, indeed, go far in establishing the complex number
system on a firm basis. The first complete and formal definition, however,
was given by his contemporary, William Hamilton. We begin with this
definition, and then consider the geometry of complex numbers.
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1.1 The Field of Complex Numbers

We will see that complex numbers can be written in the form a + bi, where
a and b are real numbers and i is a square root of — 1. This in itself is not a
formal definition, however, since it presupposes a system in which a square
root of — 1 makes sense. The existence of such a system is precisely what
we are trying to establish. Moreover, the operations of addition and
multiplication that appear in the expression a + bi have not been defined.
The formal definition below gives these definitions in terms of ordered
pairs.

1.1 Definition. The complex field C is the set of ordered pairs of real
numbers (a, b) with addition and multiplication defined by

(a,b) + (c,d)=(a+ c,b+d)
(a,b)(c,d) = (ac — bd,ad + bc).

The associative and commutative laws for addition and multiplication as
well as the distributive law follow easily from the same properties of the
real numbers. The additive identity, or zero, is given by (0,0), and hence the
additive inverse of (a,b) is (—a, —b). The multiplicative identity is (1,0).
To find the multiplicative inverse of any nonzero (a, b) we set

(ab)(x, y) = (1,0),

which is equivalent to the system of equations:

ax — by =1
bx+ay=0
and has the solution
a —b
xX=——, = 5
a’+ b? Y a’ + b?

Thus the complex numbers form a field.
Suppose now that we associate complex numbers of the form (a, 0) with
the corresponding real numbers a. It follows that

(a,,0) + (a,,0) = (a, + a,,0) corresponds to a, + a,
and that
(a,,0)(a,,0) = (a,a,,0) corresponds to a,a,.
Thus the correspondence between (a,0) and a preserves all arithmetic
operations and there can be no confusion in replacing (a,0) by a. In that
sense, we say that the set of complex numbers of the form (a,0) is
isomorphic with the set of real numbers, and we will no longer distinguish

between them. In this manner we can now say that (0, 1) is a square root of
— 1 since

(0,1)(0,1) = (= 1,0) = —1
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and henceforth (0, 1) will be denoted i. Note also that
a(b,c) = (a,0)(b,c) = (ab,ac),

so that we can rewrite any complex number in the following way:
(a,b) = (a,0)+ (0,b) = a + bi.

We will use the latter form throughout the text.

Returning to the question of square roots, there are in fact two complex
square roots of —1: i and —i. Moreover, there are two square roots of any
nonzero complex number a + bi. To solve

(x + iy)’=a+ bi
we set
xt—)y=a
2xy=0>b
which is equivalent to
4x* — 4ax*> - b2 =0
y=>b/2x.
Solving first for x?, we find the two solutions are given by

a++a*+ b?

x == 3
—a +a’ + b? ’
y=%= i\/ 3 (signb)
where
Slgnb - { 1 lf b > 0
-1 ifb<0
EXAMPLE

i) The two square roots of 2i are 1 + i and — 1 — i.
ii) The square roots of —5 — 12 are 2 — 3i and —2 + 3i.

It follows that any quadratic equation with complex coefficients admits
a solution in the complex field. For by the usual manipulations,
az’+ bz+c¢c=0 a,b,c € C, a0
is seen to be equivalent to

(HL)Z: b’ —4ac
442

>

2a

and hence has the solutions

o — b +b? — dac

z= 2 . (1
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In Chapter 5, we will see that quadratic equations are not unique in this
respect: every nonconstant polynomial with complex coefficients has a zero
in the complex field.

One property of real numbers that does not carry over to the complex
plane is the notion of order. We leave it as an exercise for those readers
familiar with the axioms of order to check that the number i cannot be
designated as either positive or negative without producing a contradiction.

1.2 The Complex Plane

Thinking of complex numbers as ordered pairs of real numbers (a,b) is
closely linked with the geometric interpretation of the complex field,
discovered by Wallis, and later developed by Argand and by Gauss. To
each complex number a + bi we simply associate the point (a,b) in the
Cartesian plane. Real numbers are thus associated with points on the
x-axis, called the real axis while the purely imaginary numbers bi corre-
spond to points on the y-axis, designated as the imaginary axis.

Addition and multiplication can also be given a geometric interpretation.
The sum of z, and z, corresponds to the vector sum: If the vector from 0 to
z, is shifted parallel to the x and y axes so that its initial point is z,, the
resulting terminal point is z, + z,. If 0, z, and z, are not collinear this is the
so-called parallelogram law; see below.

zy tz,

Z2

The geometric method for obtaining the product z,z, is somewhat more
complicated. If we form a triangle with two sides given by the vectors
(originating from O to) 1 and z, and then form a similar triangle with the
same orientation and the vector z, corresponding to the vector 1, the vector
which then corresponds to z, will be z,z,.

This can be verified geometrically but will be most transparent when we
introduce polar coordinates later in this section. For the moment, we
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observe that multiplication by i is equivalent geometrically to a counter-
clockwise rotation of 90°.

With z = x + iy, the following terms are commonly used:

Rez, the real part of z, is x;
Im z, the imaginary part of z, is y (note that Imz is a real number);
z, the conjugate of z, is x — iy.

Geometrically, Z is the mirror image of z reflected across the real axis.

N

~
o
N

/

(=]
——————————
\

|

|z|, the absolute value or modulus of z, is equal to x> + y? ; that is, it is
the length of the vector z. Note also that |z, — z,| is the (Euclidean)
distance between z, and z,. Hence we can think of |z,| as the distance
between z, + z, and z, and thereby obtain a proof of the triangle ine-
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quality:
|2y + 25| < |zy] + |z,].

An algebraic proof of the inequality is outlined in Exercise 8.

zy + 2z,

Arg z, the argument of z, defined for z # 0, is the angle which the vector
(originating from 0) to z makes with the positive x-axis. Thus Argz is
defined (modulo 27) as that number 6 for which

sing = 1mz - cosf = Rez
2| ||
A
z
|| |Im z|
0 -
0 IRe z| .

ExAMPLES

(i) The set of points given by the equation Rez >0 is represented
geometrically by the right half-plane.
(i) {z:z =z} is the real line.
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(iil) {z:—0 < Argz < 8} is an angular sector (wedge) of angle 26.
(iv) {z:|Argz — 7 /2| < @/2} = {z:Imz > 0}.
(v) {z:]z + 1] < 1} is the disc of radius 1 centered at — 1.

:

(iii)




