ylor & Francis Group

INTRODUCTION TO
IMAGE
PROCESSING

and

ANALYSIS

JOHN C.RUSS
J. CHRISTIAN RUSS

E2009002796

ooooooooooooooooooooo

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-13: 978-0-8493-7073-1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to
publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of
all materials or for the consequences of their use.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:/
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Russ, John C.
Introduction to image processing and analysis / John C. Russ and J. Christian Russ.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-8493-7073-1 (hardback : alk. paper) 1. Image processing. I. Russ, Christian. II. Title.

TA1637.R86 2008
621.36'7--dc22 2007016992

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

For Helen, Jenn, and Colette

Introduction

Assumptions

This text is intended to introduce students to the programming involved in image pro-
cessing and analysis. The student is assumed to have some previous programming expe-
rience, and to be able to use a C compiler and programming environment. Either a
Windows (Win 2K or later) or Macintosh (OS X) computer may be used. The concentration
of topics here is on the processing and measurement of images, not on peripheral subjects
such as the wide variety of file formats in which images are stored, nor the display and
printing of images, nor the statistical techniques for interpreting measurement data. This
text is not intended to be an encyclopedia of image processing (see the References for
appropriate choices), but is instead focused on the implementation of many of the most
widely used and most important image processing and analysis algorithms, which
requires also an understanding of their results and purpose.

Unlike many texts that deal with image processing algorithms, this book does not con-
centrate on the mathematical underpinnings of the field (this is particularly true in the
section on Fourier transforms). Rather, it introduces just enough of the math to explain
the workings of the algorithms while emphasizing the practical reasons for the use of the
methods, their effects on images, and their appropriate applications. Also, the intent in
the chapters that follow is to combine image processing with image analysis. As indicated
in Figure 0.1, image processing comprises a broad variety of methods that operate on
images to produce another image. The changes that are introduced are generally intended
to improve the visibility of features and detail, or to improve the images for printing or
transmission, or to facilitate subsequent analysis. Chapters 1, 2 and 3 deal with the
algorithms used in these processing steps. Image analysis is the process of obtaining
numerical data from images. This is usually accomplished by a combination of measure-
ment and processing operations, as described in Chapters 4 and 5. The data obtained by
measurement may subsequently be analyzed statistically, or used to generate graphs or other
visualizations.

The Program Environment

The selection of a host program for running the routines to be developed has an important
consequence for the choice of a working environment to be used for writing them. We
wanted to eliminate the need to create an entire working program that can acquire images
from cameras or scanners, read various image file formats, and display and print images
before any image processing and analysis routines could be introduced. Accordingly, the
decision was taken to make use of a widely used program as a host. Adobe Photoshop®
handles all of those tasks, presents a consistent user appearance on both Mac and Windows
computers, and has a well-documented application program interface (API, the relevant

Image
Processing

Statistical
Analysis
(Data Processing)

-

Visualization
(Data Graphics)

FIGURE 0.1
The relationships between image processing, image analysis, data processing, and data visualization.

portions of which are described in the Appendix) for “plug-ins” that can access the image
data for processing and measurement.

The plug-ins themselves are dynamically linked libraries (DLLs) that can be separately
compiled and placed in a folder where the program accesses them. Each individual plug-
in can be dedicated to a specific function, which is listed as a separate menu item. This
makes it possible for the student to easily and quickly compile and test routines, and to
build a library of functions that can be applied in sequences and combinations to accom-
plish more complex tasks.

Furthermore, the API defined by Adobe engineers for Photoshop-compatible plug-ins has
been adopted by many other programs, ranging from very inexpensive ones (e.g., Adobe
Photoshop Elements®, Corel Paint Shop Pro®, Lemke Graphic Converter®) to other graphic
arts packages (e.g., Deneba Canvas®, Corel Painter®) and even professional image analysis
packages (e.g., Media Cybernetics Image-Pro Plus®). Several of these programs (including
Photoshop) are available at reduced cost for educational and student use, or may be
available on a campuswide license. The widespread use of Photoshop and the many
compatible programs means that students gaining experience with programming image
processing routines using this text will be directly able to use the same knowledge in
many practical settings.

The use of the standard C programming language ensures a consistent style and knowl-
edge base with other programming courses, and allows students to take advantage of the
skills they have already acquired. Unlike image processing texts that use languages like
Basic or Java, the use of C is consistent with professional applications, and it ensures
clarity, simplicity, flexibility, and good performance. The use of C++ would have added
unnecessary overhead and complexity. The interface code (often referred to as the “glue”
that implements the API and binds the plug-ins to the host program) and the utilities
provided on the companion CD handle the details of converting various image modes to
a common one and provide the necessary supporting routines, which allows the student
to concentrate on the central topics of image processing and analysis, rather than spending
time on other programming tasks.

Specialized image processing texts that use Matlab®, Mathematica®, Mathcad®, and other
mathematics and visualization packages make use of highly optimized and prepro-
grammed subroutines that can be invoked, typically by a complex command line syntax
that does little or nothing to help the student understand the actual procedures or to create
new ones. Indeed, there is no effort made toward optimization or efficiency in the code
examples used in this text. Instead, relying on the fact that computers have become quite
fast in recent years, the emphasis is entirely on clarity and consistency. Once the principles
are understood and the basic routines are implemented, the student who is interested in

optimization of either speed or memory usage (for example) is welcome to explore those
possibilities.

The plug-in interface used for the examples and projects covered by this text can be used
with all versions of Photoshop from 5.0 and later (the current version as of this writing
is Photoshop CS3, aka Photoshop 10). Some of the routines that are programmed in the
examples shown here duplicate basic image processing routines that are built into Pho-
toshop (and the other programs named above). For example, just about every image
processing program has a Gaussian smoothing function. However, it is still important for
the student to understand how the function can be implemented as well as what effect it
has on the image.

Other functions covered in this text extend standard routines in novel and very useful
ways. An example is the commonly used median filter, and the conditional versions
introduced in this text. Still other routines that are developed in the text go beyond the
basics to provide advanced processing and measurement capabilities.

This text does not try to present an encyclopedic compendium of image processing algo-
rithms, nor to overwhelm the reader with their mathematical complexities, notations, or
derivations. The emphasis is on clear explanations of the most commonly used and most
universally useful techniques, with examples. The examples include both code fragments
and illustrations of results, as well as appropriate diagrams and necessary equations. The
student who masters these basic tools will be able to build upon that knowledge base to
handle other techniques he or she may encounter later on, in the extensive literature
covering this dynamic and rapidly expanding field.

Image Values

Images may be acquired from many sources, including digital cameras and desktop
scanners as well as scientific instruments, reconnaissance satellites and, of course, via the
Internet. Each image is an array (generally a rectangular array) of pixels (short for picture
elements), and each pixel contains information. The address of each pixel within the image
is usually specified as an (x,y) pair, with x indicating the distance from the left edge and
y indicating the distance down from the top, both values starting at zero and increasing
to (width - 1) and (height - 1), respectively. Measuring y downward from the top rather
than up from the bottom is a historical convention that arose because of the way that
computer displays (and television sets) are scanned.

Note: Key words that are frequently encountered in image processing and analysis are
highlighted in the text, as is pixels in the preceding paragraph. It is recommended that the
student become familiar with them. The index also highlights the pages where these key
words are defined.

In some cases, the information associated with each pixel may be a single value, repre-
senting the grayscale (monochrome) brightness of that point in a scene. The most common
type of image encountered will contain color information, which the pixel may represent
as a combination of red, green, and blue (RGB) values. Other combinations of values are

possible and, indeed, very useful for processing as will be seen, but the RGB triplet is the
most common format and is used in Photoshop and most image processing programs. It
also corresponds to the colors used in cathode ray tube (CRT) and liquid crystal (LCD)
displays used to present images to the viewer, and in most cameras or scanners that are
used to acquire images.

Some image sources may provide more than three values at each pixel. For example, many
satellite images consist of the visible red, green, and blue channels as well as several
infrared values. Also, scientific instruments may have dozens or hundreds of channels,
representing different signals or elemental composition, for instance. These are not dealt
with explicitly in this text, but represent straightforward generalizations of three-channel
RGB color images.

In many traditional image processing programs, the pixel values themselves are treated
as integers that can range from 0 (black) to 255 (white). That artificial limitation was
introduced historically because it corresponded to a single 8-bit byte of computer memory,
was easily handled by integer math routines in slow CPUs, and was adequate to represent
the dynamic range of signals from sources such as a video camera (which actually has
fewer than 256 distinguishable levels). With the advent of digital cameras and scanners
(not to mention scientific devices) with greater precision, and the appreciation that faster
modern computers do not impose a significant penalty for using floating point arithmetic,
it seems to us better to move beyond the “8-bit integer” limitation while still preserving
a degree of consistency with the past.

Accordingly, the convention used for the image handling routines throughout this book
is that the values can range from 0 (black) to 255 (maximum), but are not restricted to
integer values. All values are inherently treated as floating point numbers. Furthermore,
all images received from and returned to the host program are considered to be RGB color
images. That means images which Photoshop considers to be 8 or 16 bits per channel, and
either grayscale (monochrome) or RGB color, are all converted in the interface software
to consist of three values per pixel, representing red, green, and blue, respectively, and
with a floating point range from 0.0 to 255.0.

For an image that is actually monochrome, the red, green, and blue values will be identical.
To confirm that this is true, simply examine the computer display with a magnifying glass.
When a monochrome (grayscale) image is displayed, the signals sent to the red, green,
and blue dots on the screen are equal in magnitude and visually blend to produce the
impression of neutral grays. When red, green, and blue are all set to 255, the result is
perceived as white. For an image with a precision greater than 8 bits, the pixel values in
images will be represented as having fractional parts (e.g., 143.627).

Some of the plug-in routines will perform image processing by reading the original image
from the host program, manipulating the pixel values, and writing the resulting image
back to the host program. The conversion of values from whatever mode the image uses
in the host program to the three-value floating point format, and back again, is handled
by the interface software (which is fully documented in the Appendix).

As an example of a (trivial) program that reads, alters, and rewrites values in an image,
Code Fragment 0.1 performs what most programs call “inverting” an image. This is not
the inverse in the mathematical sense of 1.0 divided by the value, but rather replaces each
value by 255 minus the value, and should more properly be called complementing or

reversing the image values. For a monochrome (grayscale) image the result is like a
photographic negative (Figure 0.2). For a color image, reds are replaced by cyans, blues
by yellows and greens by magentas (Figure 0.3). The reasons for these complementary
colors will become more apparent in the next chapter.

Code Fragment 0.1 — Complementing/reversing an image
// this struct is defined in the PhotoshopShell.h file
// it holds three floating point values for each pixel
typedef struct
{

float red, green, blue;
} RGBPixel;

// the following is the UserCode.c file for the plug-in
#include "PhotoshopShell.h"// include the interface ‘glue’ and utilities

ErrType MainUserEntry ()
{

ErrType result = noErr; // accumulate any errors that happen

long height, width; // pixel dimensions of image
long Xy ¥i // loop counters to traverse image
RGBPixel *line = NULL; // memory buffer

GetOriginalDimensions (&width, &height); // find out how big the image is
// Allocate memory for one row of pixels
line = CreateAPointer (width, sizeof (RGBPixel)) ;
//Image reversal example
for (y = 0; y < height; y++)
{ // test if user canceled (ESC/Cancel) & advance the progress bar
if (DoProgressBarTestAbort (float)y/(float)height))// 0.0 .. 1.0
{
result = userCanceledErr;
goto mainexit;
}
ReadOriginalline(y, line); // read a line of pixel values
for (x = 0; x < width; x++) // for each pixel on the line

{ //reverse the values

line[x].red = 255.0 - line[x].red;
line[x] .green = 255.0 - line[x].green;
line[x] .blue = 255.0 - line[x].blue;
}//for x
WriteResultLine(y, line); //write changed line back
}// for y
mainexit: // clean up everything we allocated

if (line) // test to see if the pointer is still null (not allocated)
DisposeAPointer (line) ;
return result; // pass any errors back

}// MainUserEntry

(a) (b)

FIGURE 0.2
Reversing a monochrome image: (a) original [face.tif], (b) “inverse” or complement.

(@) (b)

FIGURE 0.3
(See Color insert following page 172.) Reversing the values in a color image: (a) original [balloons.tif], (b)
“inverse” or complement.

The code fragment shows the procedure for reading the image, one line of red-green-blue
values at a time, followed by the actual processing of each pixel and, finally, rewriting each
line to the host program. This line-by-line raster format corresponds to the way images are
usually stored in memory, printed, displayed, and acquired. There are many reasons for
this line-by-line format, some of them historical (the way televisions, cameras, and displays,
and other hardware devices function) and some practical (the organization of computer
memory and the efficiency that buffer memory in modern processors provides).

In the code fragment shown, a pointer is defined and memory allocated to hold one line
of values (three floating point numbers for each pixel). Creating and disposing of pointers,

and defining the other variables used in the code, is not shown explicitly in all of the code
fragments in the text, but is assumed to be the responsibility of the student.

The interface convention used by Photoshop compatible plug-ins allows the original data
to be read as many times as desired, but only to be rewritten once. (More specifically, you
can write the values as many times as you want, but only the last time will matter, and
reading will always obtain the original values, not reflecting any changes you have made.)
Consequently, some procedures will need to keep a copy of the image data in memory to
iterate upon it, and there are routines provided to create the necessary arrays in memory
for that purpose. Those temporary image arrays may also contain three floating point
values per pixel, but for some purposes it will be preferable to instead create arrays of a
single brightness value per pixel, or a complex value with a real and imaginary part,
according to the specific need.

Input and Output

Many image processing programs incorporate elaborate user interfaces with interactive
dialogs that can be manipulated via mouse and keyboard to control parameters and choices
used in the routines. They may also write files of data intended for use in spreadsheet and
statistical analysis programs. Although very useful, these capabilities are secondary to the
central interests of this text, which are the actual image processing and analysis.

For some purposes, changing the numerical or logical values of variables used in the
various routines can be accomplished satisfactorily by recompiling the routines. A greater
degree of flexibility is afforded by the ability to read numeric values from a simple text
file, such as can be created with most word processors (including the editor used for
programming). The support routines provided with this book (and documented in the
Appendix) include the ability to open a text file, and to read one or more floating point
numbers from it. Several of the examples and problems use this capability to allow making
adjustments to internal variables as the routines are run.

There is a corresponding routine for output that will create and open a text file, and one
to write a floating point number to it (followed by a line feed and carriage return). This
can be used to create a text file containing data that can be opened in a spreadsheet, or
most other data analysis and plotting programs. It is suggested that students use this basic
capability along with a spreadsheet program such as Excel® to prepare graphs such as
some of those shown in this text.

Compiling a Function

The following steps will allow you to create your own first image processing plug-in
routine, by starting with an example project (the one that reverses or complements the
image contrast, shown in the preceding code fragment) that is provided on the companion
CD. The steps correspond to using Microsoft Visual Studio® on a Windows XP® or Win-
dows 2K® computer, but can be easily adapted to other compilers or platforms. Additional

details and information can be found in the Appendix. More information, late additions,
instructions for compiling plug-ins for the Macintosh, and other resources, can be found
at the support Web site <www.intro2imaging.com>.

1. Duplicate the Example folder containing a minimal example project, and give
the folder an appropriate name.

2. Click on the UserCode. s1n file to open the project.

3. Edit the Piplpata.h file. Remember to Save the result after editing. This file
contains several items that control the appearance of the plug-in:

a. The main menu category (R+R_Book by default) defines the name that will
appear in the “Photoshop Filters” menu. A submenu with the individual filter
plug-ins opens when this menu entry is selected. This name is a Pascal string
that is always 32 characters long, so pad out a shorter entry with spaces as
shown in the example and place the actual length of the string in hex at the
beginning.

b. The submenu name for the plug-in. The format for this string is identical to
that for the category.

c. A description for the “about” box. This is a C-string and may contain any
printable characters, including the programmer’s name. Inserting a “\n” in the
string will start a new line.

d. A unique signature for the plug-in that is used by Photoshop for actions and
history. The format is four printable characters, at least one of which must be
uppercase and one lowercase. The signature must be entered in both forward
and reverse order, as shown in the example.

4. Edit the UserCode.c file to create the plug-in. The #include
“PhotoshopShell.h” statement is necessary to bring in the various interface and
support subroutine calls that are described later and illustrated throughout this text.

5. Compile the plug-in. Be sure that Release is selected in Visual Studio and select
Build->Rebuild Solution. Any errors and warnings will be reported. A
Warning from the linker that the filename ends in .8BF is expected and can be
ignored. Remember to select File->Save All and File->Close Solution
after successful compilation.

6. Copy the compiled plug-in (. 8BF file) to the folder in which plug-ins are stored
for access by the host program, and rename the plug-in from UserCode . 8BF (for
example, PlugInName.8BF). Your host program must be told where this folder
is located (in Photoshop, select Edit->Preferences->Plug-Ins & Scratch
Disks). Photoshop scans this folder when it is launched, and recognizes the . 8BF
files there to build its menu. You can replace an existing plug-in file with another
one having the same name while Photoshop is running, but to add a new one or
to change the menu entry, you must quit and relaunch the host program.

Problems

In each chapter, there are several sets of problems that relate to the procedures and
examples shown. Within each set, there are some that can be implemented simply by
putting together the example code fragments shown, and others that require a greater

degree of effort on the part of the student. There is no single “correct” answer in terms
of the exact code written, but the correctness of the result can be taken in many cases as
evidence that the procedure has been properly implemented.

The text also describes and illustrates additional procedures that may be assigned as
problems, depending on the skill level of the students, the time available and, of course,
the whims and interests of the instructor.

Solutions to the problems marked with a (#) are provided both as source code and
compiled plug-ins on the companion CD that is included with the book.

The images shown in the text are also provided on the CD. Each image is saved as a .TIF
file, readable by all of the host programs listed above.

0.5.1#. Implement a program that reads the image from the host, complements the
values, and writes it back.

0.5.2#. Implement a program that replaces the contents of an image with a horizontal
(or vertical) linear ramp of grayscale values (red = green = blue). Optionally,
modify this to generate a horizontal ramp in the red channel, a vertical ramp
in the green channel, and a reversed vertical ramp in the blue channel, or other
color combinations.

The Authors

John C. Russ received his B.S. and M.S. degrees in engineering and solid-state physics from
California Institute of Technology and his Ph.D. in engineering from California Coast Uni-
versity. At the Homer Research Labs of Bethlehem Steel Corp., in the 1960s, development of
new steel alloys, such as those used in the Trans-Alaska Pipeline, was strongly linked to the
microstructure as revealed by light and electron microscopy, microprobe, and x-ray analysis.
In 1968, Dr. Russ became director of the Applications Laboratories at Japan Electron Optics
Laboratories (JEOL), introducing the scanning electron microscope. From there, it was a
natural step to join in the formation of EDAX, which became the leading supplier of
microanalysis instrumentation for use on SEMs and TEMs. As senior vice president, he was
deeply involved in the development of these devices, the creation of software for qualitative
and quantitative interpretation of the spectra, and the imaging of elemental distributions.
After the sale of EDAX to Philips, Dr. Russ joined the faculty of North Carolina State Uni-
versity in 1978. He also participated in research at the Danish Technological Institute. After
retirement from formal teaching duties at NCSU in 1996, he accepted a position as research
director of Rank Taylor Hobson, a British manufacturer of precision instrumentation. He
continues to be active as an adjunct professor at NCSU, as well as a consultant and author.

As a professor in the Materials Science and Engineering Department, Dr. Russ and his
students have used a broad array of microscope technologies to study materials micro-
structures and surfaces. These have included conventional and confocal light microscopes,
electron and ion microprobes, scanning and transmission electron microscopes, x-ray and
neutron tomography, and a variety of scanned probe microscopes. The need to process
these images to obtain quantitative structural information led to the development of
computer control for instruments and computer processing for the data. Dr. Russ has
become widely known as a leader in the development and use of these tools for image
analysis. At NCSU his collaborations have extended far beyond the materials science field,
including food science, archaeology, biology, veterinary medicine, textiles, and others.
Beyond the campus, he has worked with a worldwide range of companies in fields such
as pharmaceutical and energy applications, and has been retained as an expert witness in
forensic cases, both civil and criminal.

Through academic courses and workshops, Dr. Russ has presented image analysis meth-
ods to more than 4,000 students. He has taught acclaimed hands-on workshops world-
wide, from Australia to Slovenia, Japan to South Africa. His more than 300 publications,
including more than a dozen books, have reached thousands more. These books include
Computer Assisted Microscopy, Practical Stereology (with Robert Dehoff), Fractal Surfaces, The
Image Processing Handbook (now in its fifth edition), Forensic Uses of Digital Imaging, and
Image Analysis of Food Microstructure. On November 16, 2006, Dr. Russ received the 2006
Ernst Abbe Memorial Award of the New York Microscopical Society for achievements
made in the field of microscopy.

J. Christian (Chris) Russ has been writing image processing and image analysis software
since 1979. His undergraduate degree is in computer science from the University of

Michigan, and he subsequently attended graduate school in biomedical engineering at
the University of Texas at Austin. Presently, he owns Reindeer Graphics, Inc., a supplier
of image processing and related software. He also works as a senior scientist on forensic
imaging for Ocean Systems, Inc.

Contents

IO AUCH O N s sssssssessmssrsussarssmssssmsesrsmsss somess ersmussisussess sessensssons deseseasssruaseaneasnsrensossmavsssssssssessossasssnsons xi
ASSUINPLIONIS ...cvvnvirieriririrenereiessisisissssssssnete st stssasassasssassase s ettt st st st snsnsssssss s enes x%
The Program ENVIrONmMEeNt..........cccoiiiieieiiinnieieiessnteseceieieecne e xi
IMAZE VAlUES.....cooviiimiiiieiiete et xiii
Input and OUEPUL........oviii s xvii
Compiling @ FUNCHON.......cooviiie e Xvii
PTOBIETIE vessscnsssussssssmsemsmuns visssssmmsmsnisrssssavssasessssssssnnssrorsaesasvsss s rronsdsrssvasamsenssssassssasssssas seses xviii
TIE, AUEHOES suscsssssvsssssssensnons sossnssesssssssnss s sss s rsssssnssertsssssesssssss 1ss8esntsssssaasres sEsesnsavnsassssssssssssavysess xix
1 Adjusting Pixel VAINES auoeaaomwormmayssmems s s sn s e s sass sy s ysosss 1
1.1 Optimizing: CONtrast sy o s T T 1
1.11 The Image HiStogramr. .. cumus i iimmisnimisssiniioimimismmmmmmanessonsassonsasassess 1
1.1.2 Other Color CoOrdinates.............covuimiueuririiiiiiciciiicc s 5
1.1.3 Maximizing CONIast ...ttt 13
1.1.4 Nonlifiear StEtChINS . covmesesemsssmossssmssnsmsasssmesssismsmsssos s s 19
115 PTOBIETNS suscsvonsssssssossnomsnmmsssmsmonsosssessmessson sesssomsssesssssesos oo sossssss s ieesss ssesiasssr s ssssssss 23
1:2 'COlOr COTFRCHION::serevsussssumuessssmmseasmymssmssss sesssemss iR e ST TS TSRS TRSEITTH 53 465356 senr oo smsosion 24
1.2.1 Neutral Gray Methods..........coooiiiiiiiiiiiiiii e 24
122 COlOr FIETS ...cueiiiiiceiccise ettt ettt 26
1.2.3 Tristimulus COrrection ...ttt 30
1.2.4 PrODIEIMS.ooviiiiiiiiitttc ettt ettt 31
1.3 Correcting Nonuniform INUmination ... 32
131 Calculating a CorteCtioN s ssmsrsrsmersmivsrsserssmamas s svm rsiasssssaassssioniosssstossenesd 32
1.3.2 Measuring the Background............cccccouviiiriiininiiccininnccccencccieeeeeeeene 34
1.3.3 PrODIEMS......oviiiit e e 36
1.4 Geometric Transformations ..ottt 36
14.1 Changing Imdge Size and INterpoOlatioN wsesssssemssmmusssassssumssssssssannmmsiis 36
14,2 ROFATON cooessursesssenssssnsommsosismsusssssmssnssvessimnessssssssssssasssssssssssosssissseianisestonsnssonsansoncrancases 41
148 A SIS om0t 55 Sassammaspsvsssarossmssmssss amssssssrsssrsssssammesnd 45
144 PIODIEINS.......oiiiiiiiiiic ettt ettt bbb 48
1.5 Image ArithmetiC ...ttt 48
1.5.1 Adding and SUbIaCtngcccoceiuiiviiiiiiiiiiiicceereesee ettt 49
1.52 Multiplication and DiviSion....ommuoaommmumammmranmmemmmm s 51
1.5.3 Other PossiDilities ;s asererssorssosess 52
154 PrODIETIS sovmsessmsussssummorsssvssioressss s minssssss s issnsiosnsassssnsssanssseseasasasssssssssescsssosssansnsnsos 55
2 Neighborhood OPerationsc.coccceveeeeerirrereeserseersesessesessessssessssessssescsseseesssnns 57
2.1 CONVOIUHON ..ottt bttt aenans 57
2.1.1 Neighborhoods and Kernels.............ccccccceuneuiuniiininrnniennseesee e 57
212 COloTS..coieieiieeieieranen, et 60
2.1.3 Boundary Bffects and Value: LImits...comusmsmsssssmmsmssssssmmmsnsmsmrnessseensans 63
214 Othet KBINBLS ommmrmmen s on s assmssissiismms somnorassmsmmmsnasssassessrin seevaseissss 66

2.1.5 Uses of Gaussian CONVOIUIONScveeueeeeeeeeeeeeeeeeeeeeeeee oo 72

2.2

23

3.2

3.3

34

35

3.6

2.1.6 MOTe aDOUL GAUSSIANS «.evvvveiieiriiiiiiiieeieiiiereeeeeeerraeeeeeeeeirsraseaeaesessssssesesssrsssnasssannes 79

2. 1.7 DeriVatiVes i sorsssosrosessermm o s o s oo 5o 308555 ST s saT s S ss se SR SRR S SRS 80
2.1.8 Other Edge-Detecting CONVOIULIONScoviuiiiiiiiiiiiiiiiiicciei s 85
2.19 Conditional or Adaptive Filters ... 88
2.1.10 Problems.......ccoouiiiiiiiiiiecc e 90
Other Neighborhood Operationsccccccciviiuiiiiiiiinis 91
2.2.], NIedian FIMOT. . cumsusissommsmomommmosesss i ess s msssss s s s s s S en 5650 91
2.2:2 COlOT ISSUES (AGAIN) sorerevsscsssisevsssssnmssssonssorssenssosess sssss ssssssssssamanssisamssinssssssssorsassissns 98
2.2.3 Neighborhood Size and Shape...........ccccccoviviiiininininiiiiiiicccnes 102
2214 INOISE ..ottt ettt nen 104
2.2.5 Ranking and Morphology ... 106
22,6 TOp Hat FIlter ...ttt ettt 108
227 REOBIOTS: uvvvvssierssssssvssssprsssssmsserens oy vemsssses soves s owes e o e S S SRR 113
Statistical. OPeTations.....omsssussrssmsrsrersrrresssss o s s T s s ¥ 116
2.3.1, The Vartiahce FIIET wouovvommuesmmsoimsmors s sisssstssisnmmnsranmsssssseses 116
232 Other Textune FIITers wummismm suaumssisissmsnsssnssssssssesssonessonessansassansssnsnsss ssmassmasmens 122
2.3.3 Enhancing Local CONIastcccoiiuiiiiiiiiciiiciiiiieicieeecnecieeeisee e 124
234 Problems.......iiiiiiicice ettt 129
Image Processing in the Fourier Domaincoviiievveccneennennenneeneenneenne. 131
Tikives ok THEEEEGHRNR vuoosves vy 5o s e e S S SRS lsinamases 131
3.1.1 The Fourier Transform of an IMageccceeeueureuerirereinrereeereeeeie e 133
3.1.2 Displaying the Transform Information..........c.ccoceeoeueiveereeereeeieeeeeieeece e 142
Sulad LOW-PaSS PIlEeTSi s mmmmsmmmacrscsocsssmssnsessmssmorsvossasssmsesmssnsensossssss meessssausssssss 145
3.14 High-Pass and Band-Pass Filterscccccocevriniuriiniinriniinrinnienesee s 150
315 Problems......uveii e 154
Renroving Peniod it NSt o oamwmmrmmmssmsmmmsmmmnssass sy it 154
3.2.1 Masks for Selected FIrEQUENCIESccccurivemessssnssssarnmassesessesessessessnsisssssessessscnne 155
2.2.2 IVICASUTCINGITES suuvmsusins mousvassissnsssissssisssinssnnmmssannsssenssssusmesemssesusussess eme vaswss ssssssssasss 158
Bi2:3 PrODIEIMIS emmsmmanssinisussonsmsnasss soomssmsmoememsssnans sasusoesomsensws sessssyes ssosssm oAy SRS AR ERSHSE 160
Convolution and Correlation............c.cceeeeeeineeieiieseieeieee e 161
3.3.1 Convolution in the Fourier DOmain.........ccccoeeorurruerueiruerrercrenesieecee e, 161
BBZ ATl ATIOI vewovssssimmmsos s o o o A S B amamassamssmmermams s ssamsa s 163
3.3.:83 PHODIGHS. iunemsmmmsmunsmmmmmsiessesisssniois sasssmmmmsesmansnsasssesemmensmore mssssssssosasmss ensgess 166
DIECORVOITHON: suissvssssammsassssssinssusninmsssssusmnsnssnsesnssnsesnmesassvsssasevesassms eswesresst sessssssms xS SRS 167
34.1 Wiener DeconVOIUtIONcccvuieuiereieieinieieieeee st e 167
34.2 The Point Spread FUNCHONc.ccceuiirieininieininee e, 171
3:4.3 PIODIEMS ...t 174
Other Transform DOMAINS...........c.ovueuiereuriineineinnisiniese e esesees e eesesees s seoe 174
8.8.1 The Wavelet TranSlOmil e suumssmmsmmmmmmnsmsmanssessoccsssssorssmssssssesss 174
SBZ PrODIEHIS ..oummmummsamunssmsisisassemomsummmmsssssnsmaesoemesesnssens s o855 ms rsssassass 180
COTIPTESSION irsesmusursmmsernissssnssms sssssansonserasasssassassnsramemesessororsess e ssmesssstSsesss B S 5 0 180
3.6.1 LoSsless COMPIESSIONcoucuuveiecirrireierireiesieeiie e 181
3.6.2 JPEG COMPIESSIONoovereeeeiceeiieesiesie st ees e eees e es e 184
3.6.3 Fourier and Wavelet COMPIESSIONvuurververvrieeieeeieceeeeeeeeeeeee e sses e 188
LT ool L o O 190
Binary IMages....ocoeiiuiiciiiiiiiiicicictecsteeste ettt e eeesaeseeseseesenea 193
DRSOV coccmvcoressssemmonssnsismessmmmssoss s si5i8as5ssanns s nemms s e oo rosss S ST R RS 193

