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Preface

The structure and characteristics of HVDC (High-Voltage Direct Current) converters have
remained practically unaltered for the first 40 years of commercial operation. Restricted by
the switching characteristics, first of the mercury arc valve and later of the silicon-controlled
rectifier, this technology requires substantial extra support at the link terminals to ensure
stable operation.

More recently the development of power semiconductors with improved characteristics
has provided the basis for a flexible AC transmission system (FACTS) technology. This
technology covers a variety of power electronics controllers created to enhance the perfor-
mance of the traditional grid. The individual members of the FACTS family are designed
to solve a specific problem, e.g. active or reactive power flow control, short-circuit current
limitation, etc. So it is the complete family that provides transmission flexibility, rather than
the individual controllers.

The new power semiconductors have also, in the past decade, changed the attitude towards
HVDC transmission, and a variety of converter configurations have been developed to take
advantage of the higher controllability and switching frequencies of the new devices.

Although the main market for HVDC is still thyristor based, a transistor-based technology
has recently been developed, and is already being used throughout the world. The new HVDC
technology can provide most of the enhancements of the individual FACTS controllers,
Le. permit large stable power transfers, deliver or absorb the required reactive power to
maintain the specified voltages at the interconnected buses, contain fast emergency controls
to avoid large fault current levels, be designed (if required) to control sub-synchronous
resonances, etc. Moreover, the DC link is the only practical way of connecting asynchronous
systems and systems of different frequencies. For a given HVDC configuration, all these
tasks can be achieved purely by control action.

Therefore, a modern HVDC interconnection is potentially the most flexible power trans-
mission system. However, the provision of greater HVDC transmission flexibility comes at
a price, in terms of either reduced efficiency or increased structural complexity. Thus, when
considering a new scheme, it is important to decide on the degree of flexibility required
for the particular application (i.e. taking into account power ratings, transmission distances,
extent of ancillary services expected, etc.).

A critical review of the HVDC options already available and under consideration consti-
tutes the purpose of this book, which therefore complements recent titles describing the
FACTS technology to help power system engineers to make informed decisions on the
planning, design and operation of future power transmission systems. It is also a useful
reference text for students taking advanced courses in power transmission.



xii PREFACE

The first five chapters describe the principles and components of existing converter
technology. Chapters 6 and 7 discuss alternative proposals for self-commutating conversion
and Chapters 8, 9, 10 and 11 the application of the various converter configurations to
HVDC transmission.

The authors would like to acknowledge the main sources of information that have made
the book possible and in particular the material reproduced, with permission, from CIGRE
Study Committee B4 and ABB industry documents.

At the personal level they wish to acknowledge the services of Greta Arrillaga (who half a
century ago also typed the first book on the subject of HVDC by Adamson and Hingorani!),
the advice received from Alan Wood and Nick Murray of Canterbury University, Dennis
Woodford of Electranix and Gunnar Asplund of ABB.
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1

Introduction

1.1 The Conventional Power Grid

The power sources in conventional power systems must operate at exactly the same frequency
and in perfect synchronism. Each generator controls the magnitude of its terminal voltage
by the excitation current and the phase angle of this voltage by means of the mechanical
torque developed by the turbine. The generators are designed to produce relatively low
voltages, and thus the generated power undergoes a number of voltage transformations,
from low to high voltage (for efficient power transmission) and from high to medium and
low voltage (for economic and safe power distribution). These changes are implemented by
power transformers.

Within a national grid, the use of a fully interconnected primary transmission system, to
which the new power stations are connected, has traditionally been the generally accepted
philosophy behind the development of an efficient power system.

The expansion of the primary transmission system was normally continued until the rated
switchgear fault level was exceeded. Beyond that point a new primary transmission system,
of higher voltage and fault levels, was created, while the previous one continued expanding
into several separate (secondary) systems. Each of these secondary transmission systems in
turn supplied a number of distribution (normally radial) feeders. So the conventional power
grid has traditionally been grouped into three separate parts, i.e. generation, transmission
and distribution, all of them inflexibly tied by the synchronous constraints.

1.1.1 Power Transfer Mechanism

Transformers, generators and transmission lines are predominantly inductive, and most loads
have an inductive component as well. The presence of inductance delays the current response
of these components to the voltage variation across them, and this effect causes phase

shifts between the voltage and current waveforms which affect the efficiency of the power
transmission process.

Flexible Power Transmission: The HVDC Options J. Arrillaga, Y.H. Liu and N.R. Watson
© 2007 John Wiley & Sons, Ltd



2 INTRODUCTION

The instantaneous power (p) associated with a power system component is the product
of the instantaneous values of the voltage (v) and current (i) at its terminals (p = vi). The

integration of the instantaneous power variation over a complete cycle divided by the period
of repetition, i.e.

am [ par

provides the average or active power. If both the voltage and current vary sinusoidally at the

same frequency, in terms of rms (root mean square) voltage (V) and current (/) quantities,
the active power is expressed as

P =VIcos(¢) (1.1

where ¢ is the phase angle between the voltage and the current fundamental frequency waves.

As the rms values are always positive, the product VI (referred to as volt-ampere or
apparent power), gives no indication of the active power sign. It is the sign of cos
(¢) (the power factor) that determines whether the circuit component is generating or
absorbing power.

In Figure 1.1, using the voltage as the phase angle reference and resolving the current into
in-phase (/,) and quadrature (1,) components, the product of V and I » 18 clearly the active
power, while the product of V and the quadrature component I, ie.

Q = VIsin(¢) (1.2)

is referred to as reactive power.

Reactive power is needed to establish the magnetic and electrostatic fields; it is temporarily
stored and then released (i.e. it consists of positive and negative regions within the cycle).
In fact the energy associated with the reactive power oscillates between the element and the
rest of the circuit (at the rate of two reversals per period). Although the reactive power has a
zero average value, it still represents real reciprocating energy that must be present by virtue
of the inductance or capacitance of the network.

When ¢, the phase angle difference in Equation (1.2), is between 0 and 1, sin(¢@) is
positive and the circuit element is said to be a consumer of Q; similarly, when ¢ is between
7 and 27, sin(®) is negative and the element is said to be a generator of Q. The convention

Ip =1cos(¢)

v =l

I, =1sin(¢)

I

Figure 1.1 In-phase and quadrature current components
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used is that when Q is positive the current lags the voltage and when Q is negative the
current leads the voltage

Squaring the expressions of P and Q in Equations (1.1) and (1.2) and adding them gives

(VI cos())* + (VI sin(¢))? = (VI)? (1.3)

and

VI=JP>+ Q2 (1.4)

Equations (1.3) and (1.4) can be represented in a four-quadrant complex diagram, as shown
in Figure 1.2, with the axes labelled +P and +;Q.

Power transfer between active sources

Figure 1.3 shows a purely inductive line interconnecting two ideal voltage sources V, and
V, (which can be either generators or nodes of a synchronous system). The phasor diagram
in Figure 1.4 represents the operating condition when the voltage at terminal 1 leads that
of terminal 2 by an angle & (referred to as the power angle) and the current at terminal 2
lags its voltage by an angle ¢ (referred to as the power factor angle). Using the voltage of
terminal 2 as a phase reference, the following expressions are derived from this diagram:

I, X cos(¢p) =V, sin(6) (1.5)
5, X sin(¢) =V, cos(6) — V, (1.6)

-Q

<l

\

P +P

~|

+Q

Figure 1.2 Four-quadrant diagram with the voltage as reference

V, £6 V, £0

LZ¢

Figure 1.3 Interconnection between two synchronous systems
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I, X Cos(¢)

2

" LXsin(¢)
]
I

Figure 1.4 Phasor diagram for the interconnection of Figure 1.3

From Equations (1.5) and (1.6) the active and reactive power transfers become

V.V, sin(6)

P =V,I,cos(¢) = X (1.7)
0= V;h,sin(g) = 21O - V) (1.8)

Thus to control the P and/or Q transfers it is necessary to vary one or more of the four
variables V|, V,, 8 and X in Equations (1.7) and (1.8). As indicated earlier, the generated
voltage phase and magnitude values can be controlled by the turbine governor and generator
excitation respectively. However, from the power transmission viewpoint, the generator
controls are slow and inefficient: the slow control imposes a power transmission restriction on
the steady-state operating point, as the power angle & in Equation (1.7) has to be kept low in
order to preserve transmission stability following large disturbances; also the relatively large

requirement of reactive power (Equation (1.8)) will overload unnecessarily the generation
and transmission systems.

Power transfer to a consumer load

Consumer loads are connected to radial feeders, normally at the end of the power distribution
network. Low power factor loads have a detrimental effect on the load voltage and, therefore,
on the power transfer capability. This effect is illustrated with reference to Figure 1.5 on the
assumption that the feeder and the primary system behind it are represented by a voltage
source (V) in series with a total system reactance (X,). To maintain the active power
constant when the power factor reduces (i.e. angle ¢ increases) requires an increase in the
load current, i.e. I; > I,; this increase causes a higher voltage drop in the system reactance
which, in turn, reduces the load voltage (V,).

Thus to maintain the required power level, either the source voltage must increase
or some means of voltage support must be provided locally. For instance, the latter
can be achieved by connecting a capacitance in parallel with the load. This will add
a quadrature component to the load current and will reduce the overall current in the
feeder; this solution is referred to as power factor correction. However, the use of local
compensation by means of passive components, although efficient, is neither fast nor

continuous and increases the likelihood of low-order harmonic resonance with the system
impedance.
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Figure 1.5 Effect of the load power factor on the load voltage

1.2 Towards a More Flexible Power Grid

A variety of technical, economical and environmental reasons affecting the generation, trans-
mission and utilisation of power are forcing a rethink on the conventional power system
development philosophy. The dilemma is that, on the one hand, there is growing opposition to
the acceptance of new transmission lines and ever increasing primary transmission voltages.
On the other hand, there is the realisation that power system interconnections bring undis-
putable benefits, such as economies of scale, wider choices of generating plant, reductions
in reserve capacity, diversity in demand, supply reliability, pooling opportunities, etc.

Clearly an important factor in the solution is the possibility of increasing the power
carrying capability of the transmission lines. In this respect conventional AC transmission
is severely restricted by the need to keep the two systems interconnected by the line in
synchronism following disturbances (i.e. when the phase difference between the terminal
voltages increases rapidly), a condition referred to as transient stability. Therefore increases
in the steady-state power carrying capability are linked to improvements in the transient
stability levels, which in turn require faster controllability. Controllability and flexibility are
used in power transmission as synonymous terms; in other words, greater flexibility implies
greater and faster controllability. The latter has been made possible by the development of
power semiconductors (discussed in Chapter 2) and their application to the control of power
apparatus and systems, commonly referred to as power electronics.

1.2.1 Power Electronics Control

The advent of power electronics technology has been the catalyst for the provision of greater
grid flexibility. A power electronics controller can be broadly described as a matrix of static
switches connecting a number of input nodes to a number (not necessarily the same) of
output nodes and the power flow may be in either direction. The circuits behind these nodes
may be either DC or AC and predominantly inductive or capacitive.



