ENERAL TOPOLOGY

WACLAW SIERPINSKI

Translated by
C. CECILIA KRIEGER




Ore} NSEL]
60| MATHEMATICAL EXPOSITIONS, No.7-= |

GENERAL TOPOLOGY

WACLAW SIERPINSKI

Professor of Mathematics at the University of Warsaw,
Member of the Polish Academy of Arts and Sciences,
- Qmmymmngmuﬁﬁwmmmmdmee

“Translated by
C. CECILIA KRIEGER

Assistant Professor in Mathematics
University of Toronto

ek S s ]

EEXCER
LEEEESN

1952



AUTHOR’S PREFACE

THE. theorems of any geometry (e.g., Euclidean) follow, as is well known,

from a number of axioms, i.e., hypotheses about the space considered,
and from accepted definitions. A given theorem may be a consequence of
some of the axioms and may not require all of them. Such a theorem will be
true not only in the space defined by all the axioms, but also in more general
spaces. It will, therefore, be of importance to introduce axioms gradually
and to deduce from them as many conclusions as possible.

We thus arrive at the concept of an abstract space (Fréchet). Theorems
obtained for a given abstract space are true for each set of elements which
* satisfies the axioms of that space; however, the set may also satisfy other
axioms. Herein lies the practical advantage of the study of abstract spaces.
For, with a suitable choice of axioms for such a space, the theorems obtained
from that space may be applied to different branches of mathematics, e.g.,
to various types of geometry, to the theory of functions, etc.

In the first chapter we develop a fairly detailed theory of the so-called
Fréchet (V)spaces. A Fréchet (V)space is a set K whose elements are sub-
ject to only one condition, namely, that with each element p of K there is
associated at least one subset of K called a neighbourhood of the element .
In chapter II we investigate (V)spaces which satisfy additional axioms, i.e.,
the so-called topological spaces; in chapters I1I, IV, and V we study topo-
logical spaces satisfying various additional axioms. Chapter VI is devoted to
the study of very important particular topological spaces, namely, the so-
called metric spaces, which find numerous applications, and chapter VII deals
with the so-called complete metric spaces.

It may be said about chapters I, II, V, VI, and VII that in each of them
new axioms are introduced about the space under consideration and theorems
are derived from them. In general, the theorems of each of these chapters are
not true in a space satisfying only the axioms of the preceding chapters.

Such an axiomatic treatment of the theory of point sets, apart from its
logical simplicity, has also an advantage in that it supplies excellent material
for exercise in abstract thinking and logical argument in the deduction of
theorems from stated suppositions alone; i.e., in proving the theorems by
drawing logical conclusions only and without any appeal to intuition, which
i so apt to.mislead one in the theory of sets.
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PREFACE iii
The book differs to quite an extent from the Inéroduction to General Topology

(Toronto, 1934). Apart from a different axiomatic treatment, which seems
to us much more advantageous, the subject matter has been considerably

enlarged and numerous problems added.
In conclusion I wish to express my thanks to the University of Toronto

for making the publication of this book possible, and to Dr. Cecilia Krieger
for translating it from the Polish manuscript.

WACLAW SIERPINSKI

Warsaw, October 1948



TRANSLATOR'’S PREFACE

HEN a new edition of Introduction to Genera} Topology was being con-
sidered, Professor Sierpinski informed me that he had prepared a new
manuscript on “General Topology” differing from the ‘‘Imtroduction” in
both content and treatment. He expressed the hope that the University of
Toronto Press would publish a translation of the new manuscript in pre-
ference to a revised edition of the ‘‘Introduction.”

The appendix appearing at the end of the Introduction is reprinted here
with very slight changes. The numerous footnotes have, for economy in
printing, been placed at the end of the book. For the same reason, the usual
notation for analytic sets was changed. It is hoped that this change will not
place any serious difficulties in the way of the reader.

I wish to take this opportunity to express my deep gratitude to all those
who with their discussion and criticism contributed to the enjoyment of a
task which might easily have proved tedious. My special thanks are due to
Mr. L. W. Crompton and Mr. W. T. Sharp who read part of the manuscript
and to Dr. R. G. Stanton who read all of it and offered valuable suggestions.

C. CeciLia KRIEGER
Toronto, February 1952
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CHAPTER I
FRECHET (V)SPACES

1. Fréchet (V)spaces. A Fréchet (V)space, or briefly a (V)space, is a
set K of elements in which with each element a there is associated a certain
class of subsets of K called neighbourhoods of a. _

Thus the set of points in the plane is a (V)space if a neighbourhood of a
point p is taken to be, e.g., the interior of an arbitrary circle with centre at .
Clearly, a neighbourhood in this case can be defined in many ways as, for
instance, the interior and boundary of any square with centre at p. It would
also be consistent with the definition to assume that each point p of the plane
possesses only one neighbourhood, e.g., the set consisting of p itself.

The set of all real functions of a real variable is a (V)space, if a neighbour-
hood of f(x) is defined to be the set of all functions g(x) which, for a given
positive ¢ and for all values of x, satisfy the inequality

[f(x) — g)| <e-

In particular, an arbitrary set K is a (V)space if each element of K possesses
only one neighbourhood, for instance, the set K itself, or if every subset of K
is a neighbourhood of each element of K.

A Fréchet (V)space is thus defined by its system of neighbourhoods.
A given set K for which there are defined two different systems of neighbour-
hoods gives rise to two different corresponding (V)spaces. It might seem
that the concept of a (V)space without additional assumptions is too general
to embrace many properties. It will be seen however that, with suitable
definitions, a whole theory of (V)spaces can be developed and that: certain
of its results find an application in various branches of topology and of the
thedry of functions.

2. Limit elements and derived sets. Let K be a given (V)space. An
element p of K is said to be a limit element of a set E C K if every neighbour-
hood of p contains at least one element of E different from p. The set of all
limit elements of a set E is called the derived set of E and is denoted by E'.
It is clear that if p € E' then p € (E — {p})’, and p € 4’, where
E— (p) CACK.! |

If a set E has no limit elements its derived set is the null set. In particular,
the derived set of the null set is empty. We thus have the following properties
of the derived set:

(1) E =0, E =0,
3



4 FrECHET (V)SPACES
() E\CE, . E.CECEK,

3 a € (E - {a}), ea €E.

Thus the function f(E) = E’ assigns to each set E C K a set f(E)CK
which is subject to the following conditions:

(i) IfE =0, then f(E) = 0;
(ii) K E,CECK, then f(E) Cf(E);
(iii) If a € f(E), then a € f(E — {a}).

Suppose now that K is a given set and f(E) a function which assigns to each
set E C K a set f(E) C K which is subject to conditions (i), (i), (iii). Itis
then possible to define neighbourhoods of the elements of X so that K is a
(V)space in which
4) . E = f(E), ECK.

For let a subset H C K be a neighbourhood of the element a € K if and
only if e € K — f(K — H). This condition is certainly satisfied by H = K
for then, from (i), f(K — H) = 0; consequently every element of K has at
least one neighbourhood.

Suppose that E is a given subset of K and a € E’. Every neighbourhood
of a contains at least one element of E; consequently, the set H = K — E
. cannot be a neighbourhood of @, ie., ¢ § K — f(K — H). Buta € K; hence
a € f(K — H) = f(E). This gives
(5) E' C f(E).

Next assume that a ¢ E’. Then there exists a neighbourhood H of a such
that H(E — {a}) = 0 and therefore E — {a} C K — H. By (ii)

(6) f(E — {a}) Cf(K — H).

Since H is a neighbourhood of a we have a € K — f(K — H); hence
a ¢ f(K — H) and therefore, from (6), a ¢ f(E — {a}); by (iii) ¢ ¢ f(B).
This gives .

) f(E)CE.

Combining (5) and (7), we obtain (4).

It follows from the above argument that all properties of the derived set
‘which can be proved to hold in every (V)space can be deduced from the
properties (1), (2), and (3).

3. Topological equivalence of (V)spaces. Two (V)spaces consisting of the .
same elements are said to be fopologically equivalent if the derived set of each
subset in one space is the same as the derived set of the same subset in the
other space. They are also said to possess the same topological structure or,
more briefly, the same topology.

It is easily seen that every (V)space may be associated with a topologically
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equivalent (V)space in which each element is contained in each one of its own
neighbourhoods. It may, therefore, be assumed without any loss of generality
that, whatever the definition of neighbourhoods, each element is contained
in each one of its neighbourhoods.

TaeoreM 1. Two (V)spaces K, and K, consisting of the same elements are
topologically equivalent (we assume that each element is contained in each one of
its neighbourhoods) if and only if to every meighbourhood U of an element in
K, there exists a meighbourhood of that element in Ks which is contained in U,
and vice versa.

Proof. Let K, and K be two topologically equivalent (V)spaces consisting
of the same elements. Let a be a given element of KX = K; = Ky and U; a
neighbourhood of ¢ in K;. Put E=K — U;; hence E. U; = 0 and so
a ¢ E’ and, of course, a ¢ E. Since K, and K; are topologically equivalent
the derived sets of E are the same in both spaces. There exists, therefore, a
neighbourhood U; C K of @ such that Us(E— {a}) = U:. E = 0; hence
Us CK — E = U;. Similarly, because of the symmetry of the conditions,
to every neighbourhood U; C K of a there exists a neighbourhood U; C K,
of a such that Uy C Us. The condition of the theorem is therefore necessary.

Suppose the condition of the theorem satisfied and let E be a set contained
in K; = K;. If an element ¢ ¢ E' C K, there exists a neighbourhood U,
such that Ui(E — {a}) = 0; but, by the condition of the theorem, there
exists a neighbourhood U; C K such that U, C U,; hence Ux(E — {a}) = 0
and therefore ¢ § E' C K,. Thus every element of a derived set in K; is an
element of the corresponding derived set in K, and conversely, because of the
symmetry of the conditions. As a consequence we see that derived sets of a
given set in the two spaces are identical and therefore the two spaces are
topologically equivalent.

Examples
1. Given two elements a and b obtain all (V)spaces consisting of these two

elements (assuming that each element is contained in each one of its neigh-
bourhoods) and determine which of them are topologically equivalent.

Neighbourhoods of a: Neighbourhoods of b:

K, {a} {b}

K, {a} {a, b}

K, ' {a} . {8}, {a, b}

K, {a, b} {b}

Ky {a- b} {av b}

KO {ar bl {b’, {av b}

K, {a}y {ar b} {b}

Ky {alr {a' b} la, b’

K, {a}, {a, b} {8}, {a, b}
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The following spaces are topologically equivalent: K, K, K7, and Kg;
Ky and Ks; Kiand K. But no two of K;, K3, K,, and K are topologically
equivalent.

2. Show that the number of topologically non-equivalent (V)spaces con-
sisting of three elements is 125. ,

Let K = {a, b, ¢}; there are 15 different sets of neighbourhoods of the
element a:

1. {a}; 2. {a, b}; 3. {a, ¢}; 4. {a, b, c}; 5. {a}, {a, B}; 6. {a}, {a, c};
7. {a}, {a, b, ¢}; 8. {a, B}, {a, c}; 9. {a, b}, {a, b, c}; 10. {a, c}, {a, b, c};
11. {a}, {a, b}, {a, c}; 12. {a}, {a, ¢}, {a, b, c}; 13. {a, b}, {a, ¢}, {a, b, ¢};
14. {a}, {a, b}, {a, b, ¢}; 15. {a}, {a, b}, {a, ¢}, {a, b, c}. .

Of these the systems 1, 5, 6, 7, 11, 12, 14, and 15 are topologically equivalent
and so are the systems 2 and 9, 3 and 10, 8 and 13; but no two of 1,2, 3,4,
and 8 are topologically equivalent. * Corresponding to each element of K there
are 5 topologically non-equivalent systems of neighbourhoods; consequently
there are 5% topologically non-equivalent (V)spaces each consisting of the
same three elements.

3. Show that there are 19 topologically non-equivalent (V)spaces each
consisting of the same 4 elements.

4. Show that the number of different (V)spaces consisting of the same n
elements is
@ -1~
5. Determine the number of different topologies in a (V)space consisting
of (a) two elements, (b) three elements (see examples 1 and 2). :

Given a set M of cardinalm one may divide all (V)spaces obtained from
M into disjoint classes assigning two (V)spaces to the same class if and only
if they are topologically equivalent. How many of these classes are there?
In other words, how many different topological structures can be induced
into a space of cardinal m?

It can be shown that in an infinite space of cardinalm there can be defined
2™ different topologies (hence as many as there are different (V)spaces ob-
tained from a given set of cardinal m).

4. Closed sets. A set which contains all its limit elemeuts is called closed.
Thus E is closed if and only if E’ C E.

THEOREM 2. The intersection of any aggregate of closed sets is closed.

Proof. Let P = II E be the intersection of the closed sets E. Hence
P CE for every E of the aggregate; by property (2) of derived sets
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P’ C E' C E since E is closed. Therefore, P’ C Il E = P; consequently
P is closed.

Since, in a given (V)space, the derived set is uniquely defined it follows
that the family ® of a'l closed sets of this (V)space is also uniquely defined.
Thus the families of closed sets in two topologically equivalent spaces are
identical. But, as is shown in § 5, there are topologically non-equivalent
spaces consisting of the same elements and having all closed sets in common.?
Hence the family of all closed sets of a (V)space does not determine the to-
pology of this space.

TueorEM 3. If a set E is closed then every set contained in E and containing
E' is closed. '

Proof. Let T be a set such that E' CT CE; then T"CE C T and
therefore T is closed.

In particular, the derived set of a closed set is closed. However, the derived
set of a set which is not closed may not be closed.?

5. The closure of a set. It follows from the definition of a closed set that
the null set is closed and the whole (V)space is closed. Thus for everyset E C K
there exist closed sets containing E (e.g., the set K). Denote by F the inter-
section of all closed sets containing E. By Theorem 2, F is closed; it is called
the closure of the set E. Hence the closure of every set is a closed set. More-
over, it is the smallest closed set containing E, that is to say, it is contained in
every closed set containing E. Consequently E is closed if and only if E = E.
In particular,

B=t . (where B = (#)).
From E C E, since E is ¢losed, we obtain at once that E' C E and so
E+ E' C £ forevery set E C K.

It follows immediately that the closure of a set possesses the following

properties:*

1) E =0, E=0;
2) E,CE, E,CECK;
3) ECE, ECK;
4) E=E, ECK.

We have already defined the function f(E) = E’ for every E C K; we can
now define the function ¢(E) = E in terms of the function f. For ¢(E) is the
intersection of all sets F C K such that E + f(F) C F. But we cannot define
the function f in terms of the function ¢. Two (V)spaces with the same ele-
ments and having two different functions f(E) = E' defined in them may
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have the same function ¢(E) = ¥, as can be seen from the following example:
Let Vy be a (V)space with three elements g, b, ¢, each element having only
one neighbourhood, namely: i '

Ui(a) = {a, c}, Us(b) = {b,a}, U(c) = {c, B).

The set {a} has a single limit element b, hence {a}’ = {b}; similarly,
{6}’ = {c} and {c}’ = {a}. These sets are obviously not closed; this proves
incidentally that, in a (V)space, derived sets need not be closed. Nor are
the sets consisting of two elements closed. For {a, b} = {b, ¢} which is
obviously not contained in {a, 5}. The only closed sets of V; are the null set
and the set V). Hence for E C V; and E » 0, we have

#(E) = E= Vi
while for E = {g}, we have
fi(E) =E = {6}.

Next, let V; be a (V)space with the same three elements a, b, ¢, each
element having the same neighbourhood, namely,

Us(a) = Us(b) = Usx(c) = {a,b,¢c].
Here {a}’ = {b, c}, {8} = {c, a}, {c}’ = {a, B}, {5, ¢} = {c,a} = {a, b}’

= {a, b, c}; hence the only closed sets of V; are the null set and Vi. Thus
for E C Va, E # 0, we find that

$1(E) = Vy = V), = ¢,(E)
but for E = {a} we have

JH(E) = {b, c} # {8} = f1(E).

It is thus seen that, even if the closures of a given set in two ( V)spaces
with the same elements be the same, the derived sets of that set may be
different. Hence, if in a given (V)space the derived set is known, then the
closure also is known, but not conversely. The function ¢(E) = E does not,
therefore, define the topology of a (V)space.

The function ¢(E) = E associates with each set E C K a definite set
¢(E) C K subject to the conditions:

1. ¢(E) = 0, E =0;
2. $(E1) C ¢(E), E\CE;
3. E C ¢(E);

4. ¢(#(E)) = ¢(E).

Let now K be a given set, ¢(E) a function defined for every E C K and
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subject to the conditions 1, 2, 3, and 4; it is then possible to define neighbour-
hoods in K so that K becomes a (V)space in which
(8) E = ¢(E) forall E C K.

Thus, for example, let a set I C K be a neighbourhood of ¢ € K if and
) only if
©) a €K — ¢((K — H) — {a}).

The set H = K satisfies (9) hence every element of K has at least one
neighbourhood. We first show that for every E C K we have

(10) $(E)=E+E.

In fact, if a ¢ $(E) then, from 3, a ¢ E; since E — {a} C E we get from
condition 2, ¢(E — {a} ) C ¢(E) and so a § ¢ (E — {a} ). But this gives
a€K—¢(E — {a}). LetH=K — E, thena € K — ¢((K — H) — {a}]);
consequently H is a neighbourhood of a and H contains no elements of E.
Hence ¢ ¢ E’. This gives
(1) E+ E C ¢(E).

Next, suppose that ¢ ¢ E+ E'. Then a ¢ E’; hence there exists a
neighbourhood H of a such that H.E = 0, Therefore, EC K — H and,
sincea ¢ E, EC (K — H) — {a}; hence, from condition 2, we have

(12) ¢(E) C ¢((K — H) — {a}).

Buta € H, ie,a € K — ¢ (K — H) — {a}); hence, from (12), ¢ ¢ $(E);

this gives

(13) $(E)CE+E.

Relations (11) and (13) give (10).

From (10) and condition 4 we obtain, for every E C K, the relation

$(E+E) = ¢(¢(E)) = ¢(E) =E+E,

that is,

(14) $(E+E)=E+E;

since, by (10), E' C ¢(E) for every E C K, (14) implies that

(E+EYC¢(E+E)=E+E.

Hence the set E + E’ is closed and since it contains E it must contain E.
Therefore,

(15) E C ¢(B).
On the other hand, we have E + E’' C ¥ and so by (10)
(16) E+ E = ¢(E)CE.
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From (15) and (16), we obtain
(17) E=¢E)=E+E for every E C K.

We have thus proved that for every function ¢(E) defined for E C K and
subject to the conditions 1, 2, 3, and 4, neighbourhoods can be so defined that
K becomes a (V)space in which (17) holds.

The relation £ = E + E’ holds in many important (V)spaces (§ 19), but
need not be true in general, as may be seen from the example of the space
Vi = {a, b, ¢} given in this-section, where E = {a} and E + E’' = {a, b}
# {a, b, ¢} = E. It follows from the above established properties of the
functions ¢(E) that every property of the closure of a set which holds in all
(V)spaces must result from conditions 1, 2, 3, and 4. It can be easily shown
that these conditions are independent. ‘

The closure E of a set E C K (K a (V)space) can be obtained by means of
transfinite construction as follows:

Let E, = E; for every ordinal number a > 0 define by transfinite induction
the set

(18) ' E, = (K§’Ez) .
Since
n<§-E‘ C%Ee. 0<a<B
we have
(19) E, C E;.

Suppose that the cardinal of K is ¥},; then there exists an ordinal number
v, where 0 < » < wp41, such that '

(20) E. = Eu—l.
For if not, assume that -
(21) E, 7 E., 0<a < e

By (19), E, C E..1 and therefore for every ordinal a satisfying the inequality
0 < a < w41, there exists, by (21), an element p, such that p. € Eess but
pe ¢ E.. Consequently p, § Egya for & < a. But pg € Ega; hence po # 4,
for ¢ < a.

The transfinite sequence {$.}, & < w41, consisting of different elements has
cardinal 8,1, contrary to the fact that it is a subset of X whose cardinal
is X,. The existence of an ordinal number », where 0 < » < wut1, such that
{20) is true is thus established.

Furthermore,

(22) . E= 3 E.

0<i<r



