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~ PREFACE .
The theory that forms the subject of this b8ok had its beginning with Artin’s

- extension in- 1927 of Wedderburn’s structure theory of algebras to rings satisfying

* the chain conditions. Since then the theory has been considerably extended

and simplified. The only exposition of the subject in book form that has ap-
peared to date is Deuring’s Algebren published in the Ergebnisse series in 1935.
Much progress has been made since then and this perhaps justifies a new exposi-
tion of the subject. .
The present account is almost completely self-contained. That this has been
possible in a book dealing with results of the significance of Wedderburn’s theo-
rems, the Albert-Brauer-Noether theory of simple algebras and the arithmetic

_ ideal theory is another demonstration of one of the most remarkable charac-

teristics of modern algebra, namely, the simplicity of its logical structure. -

" Roughly speaking our subject falls jnto three parts: structure theory, repre-

sentatidn theory and arithmetic ideal theory. The first of these is an out-
srowth of the structure theory of algebras. It was motivated originally by the
desitsto discover and to classify “hypercomplex’ extensions of the field of real
nugvba/e&"’?‘iﬂ‘e most important names connected” with this phase of the de-
velopment of e theory are those of Molien, Dedekind, Frobenius and Cartan.
The structure t} eory for algebras over a general field dates from the publication

 of Wedderburn § thesis in 1907; the extension to rings, from Artin’s paper in

1927. The theory of representations was originally concerned with the prob-
lem of representing a group by matrices. This was extended to rings and was
formulated as a theory of modules by Emmy Noether. The study of modules
also forms an important part of the arithmetic ideal theory. This part of the
theory of rings had its origin in Dedekind’s ideal theory of algebraic number
fields and more immediately in Emmy Noether’s axiomatic foundation of this
theory.

Throughout this book we have placed particular emphasis on the study of

. rings of endomorphisms. By using the regular representations the theory of

abstract rings is obtained as a special case of the more concrete theory of endo-

morphisms. Moreover, the theory of modules, and hence representatioh theory,

may be regarded as-the study of a set of rings of endomorphisms all of which are
homomorphic images of a fixed ring 0. Chapter 1 lays the foundations of the
theory of endomorphisms of a group. The concepts and results developed here
are fundamental in all the subsequent work. Chapter 2 deals with vector spaces
and contains some material that, at any rate in the commutative case, might
have been assumed as known. For the sake of completeness this has been
included. Chapter 3 is concerned with the arithmetic of non-commutative -
principal ideal domains. Much of this chapter can be regarded as a special
case of the general arithmetic ideal theory developed in Chapter 6. The
methoc.ls of Chapter 3 are, however, of & much more elementary character and
v
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this fact may be of interest to the student of geometry, since the results of this
chapter have many apphcatlons in that field. A reader who is prxmanly in-
terested in structure theory or in representatlon theory may omit Chapter 3
with the exception of 3. Chapter 4 is devoted to the development of these
theories and to some applications to the problem of représentation of groups by
projective transformations and to the Galois theory of division rings. In
Chapter 5 we take up the study of algebras. In the first part of this chapter we
consider the theory of simple algebras over a general field. The second part
is concerned with the theory of characteristic and minimum polynomlals of an
algebra and the trace criterion for separability of an algebra.

In recent years there has been a considerable interest in the study of rings that
do not satisfy the chain conditions but ihstead are restricted by topological or
metric conditions. We mention von Neumtinn arnd Murray’s mvestlgatlonj—
rings of transformations in Hilbert space, von Neumann’s theory of regular rings r
and Gelfand’s theory of normed rings. There are many important applications
‘of these theories to analysis. Because of the conditions that we have imposed .
on the rings considered in this work, our discussion is not directly applicable to
these problems in topological algebra. It may be hoped, however that the
methods and results of the purely algebraic theory will point the way for*further
development of the topological algebraic theory. =

This book was begun during the academic year 1940-1941 when as 8 visit-
_ ing lecturer at Johns Hopkins University. It served as a basis o; g
there and it gained materially from the careful reading and
Irving Cohen who at that time was one of the auditors of
thanks are due to him and also to Professors Albert, Schillin® and Hurewicz
for their encouragement and for many helpful suggestions.

N. JacoBson.
Chapel Hill, N. C.,

March 7, 1943.
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~ CHAPTER 1

GROUPS AND ENDOMORPHISMS

1. Rings of endomorphisms. With any commutative group I we may
associate a ring (M), the ring of endomorphisms (homomorphisms of M into
itself) of M. On the other hand, as we shall see, any ring with an identity may
be obtained as a subring of the ring of endomorphisms of its additive group.
Because of this fact, we may use the theory of rings of endomorphisms to obtain
the theory of abstract rings. This method of studying rings is one of the most

portant ones that we shall use in this book. It will therefore be well to begin
our discussion with a brief survey of that part of the theory of groups and endo-
morphisms that will be required later. ¢

Our primary concern in the sequel is with commutative groups. However,
since most of the results of this chapter are valid for an arbitrary group M, we
shall mot assume at the outset that M is commutative. Nevertheless, we shall

d it convenient to use the additive notation in 9: The group operation will
be Wenoted as +, the identity element as 0, the inverse of a as —a, ete.
he collection T(M) of single-valued transformations of I into
itself, i.e. ontq a subset of M. As always for transformations, we regard A = B
if the images M4 and xB are identical for all z in M. Now we shall turn T into
an algebraic s¥stem by introducing into it two fundamental operations. = First,
if A and B are in T, the sum A + B is defined as the transformation whose
effect on any x in I is obtained by adding the i images 24 and xB. 'In other
terms

(A + B) = 24 + 2B.
The product AB is the resultant of A and B:
' z(AB) = (z4)B.

The following facts concerning the algebraic system T are readily verified:
1) € is a group relative to +. The identity element of ‘this group is the

transformation 0 that is defined by the equation #0 = 0. The negative of A4, :

—A4, is given by the defining equation z(—A4) = —zA.
2) < is a semi-group with an identity relative to multiplication, i.e. (AB)C =
A(BC) and the identity element of T is the 1dent1ty transformation 1 (z1 = z).
3) The distributive law

A(B+C)=AB+AC
holds.

The system- I is therefore very nearly a ring. It fails to be one since the

! This equation justifies our notation zA. For by using it, the order of writing cor-
responds to the order of performance of the transformations.

1 &
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o GROUPS AND ENDOMORPHISMS

- relations A + B8 =B+ Aand (B+ C)A = BA + CA are not universally
- valid. We may satisfy the first of these conditions if we suppose that M is .
commutative, but even in this case, the second condition fails.

Ezample. Let I be the cyclic: group of order 2 with elements 0, 1 where
141 =0. T contains four elements

o= o) =) 4G ==()

0 1 ;
where, in general, ( b) denotes the transformation 0 — a, 1 — b. The"
‘ a

addition and multiplication tables _in T are, respectively,
"lo|1l4|B 0/1|4|B ool
0(0{1|A|B ‘0|0|0|B|B| -
1{1|0({B4A 1/0(1|A|B
AlA|B|0|1 A|0jA|1|B
B{BlA|1]0 B|0|B|0|B .

Since 04 = 0, it is clear that the second distributive law does not hold. b

. We consider next the subset () of T consisting of the endomorphg
| _(an arbitrary group). We recall the definition: A transformation
' is an endomorphism if it is a homomorphism of the group into itself Jthat is,

@+ y)A = 24 + yA.

It is clear that € is closed relative to the multiplication defined in T. More-
over, if B and C are arbitrary elements of T and A is in &, then

(B + C)A = BA + CA.

From our point of view the system € is not particularly interesting when I is
an arbitrary group, for then € need not be closed relative to the addition that
we defined in T. However, the situation is quite different when I is commu-
“tative. In this case it is readily seen that if A and B are in G, then 4 + B=
B + A, 0and — A all belong to @ Since the associative and distributive laws
for multiplicatioh hold, € is a ring. This is the fundamental

Teeorem 1. If I is a commutative group, then the set §(IN) of endomorphisms
of M is a ring relative to the operations A + B and AB that are defined by the
* equations z(A + B) = 24 + 2B, z(AB) = (zA)B.

Examples. 1) Let It be the group of rational integers under ordinary addi-
tion. Since I is a cyclic group with 1 as a generator, any endomorphism A

" —eeee |

is determined by its effect on 1. Forif 14 = aandz =1+ --- + 1, then
zA = za the ordinary product of the integers z and a. Since (—z)4 = —zA4,
this equation holds also for negative z’s and since 04 = 0 = Oa, it holds for 0.
Thus any endomorphism A of M is a transformation that multiplies the element




RINGS OF ENDOMORPHISMS 3

x 0y M by a fixed element @. The element a is uniquely determined by A, and
it-is elear that every integer @ arises from some endomorphism in this way.
Hence & is in (1 — 1) correspondence with M. If A — ¢ and B — b in our
correspondence, then x(A + B) = zA + 2B = za + zb = x(a + b) and simi-
larly z(AB) = z(ab). Hence A + B —a + band AB — ab, i.e. § is isomorphic
to the ring of rational integers 9.
2) As a generalization of 1) we let I be a direct sum of n infinite cyclic
groups. If e, ---, e, are generators of I, any endomorphism A is completely
* determined by the images ¢;A = f;. On the other hand, we may choose ele-
 ments f; arbitrarily in 9 and define (Ze;z:)A = Zfir:, z; integers. Then A4-is
an endomorphism. If 3 ~

& A = ety + -0 T €nlas, (@=1,--+,m)

a;; rational integers, then the correspondence A — (a;;) is (1 — 1) between G
and the ring of n X n matrices with rational integral elements. If B — (bsj),
‘we may verify that A + B — (a:;) + (bi;) and AB — (bs;)(as;). Hence the
corréspondence is an anti-isomorphism between € and the ring of rational -
integral matrices.” It may be remarked that the associative and distributive

« Jaws for these matrices may be deduced by means of our correspondence from
the associative and distributive laws for endomorphisms.

3) Iffit\«\s a direct sum of cyclic groups of order m, a similar discussion

- ghows that tre ring of endomorplusms of M is anti-isomorphic to the ring of
matrices w1th "lements in the ring of rational integers reduced modulo m. o

We return t the consideration of an arbitrary group M. Let ®(M) be the
set of (1 — 1) transformations of I onto itself. It is clear that if A is in @(M),
then the inverse transformation A~ is defined. It follows that G () is a group
under multiplication. .

Now if A is an endomorphism, A~ is also an endomorphism. Hence the
intersection A(M) = G(WM) A G(IM) is also a group under multiplication. The
elements of this group, the (1 — 1) endomorphisms of I onto itself, are the
automorphisms of-IM. . Of particular interest among these transformations are
the inner automorphisms. 1f s ¢ IR, then the inner automorphism corresponding
to s is the transformation S defined by the equation z8 = —s + z + 5. If
A is an arbitrary automorphism, then 2(A7'SA) = —sA + z + s4,ie. A7'S4
is the inner automorphism associated with the element sA. This shows that
the totality of inner automorphisms constitutes an invariant subgroup of the
complete group of automorphisms.

We recall that in any ring with an identity, an element  is a unst if it has both
a left and a right inveérse relative to the identity. It follows immediately that
these two inverses are .equal and that no other element in the ring can satisfy
either of the equations uz = 1 or zu = 1. As usual we denote the inverse of

* If we use the correspondence A — (a:;)*, the transposed matrix of (a:;), we obtain
an isomorphism. However, in a similar situation that will be encountered later, it is
impossible to effect this passage from an anti-isomorphism te an isomorphism. For this
_reason we prefer to emphasize the corréspondence 4 — (a;;).
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wby u™. It may be proved directly that the set of units of any ring is a group
relative to the multlphcatlon defined in the ring. Now consider any commuta-
tive group 9, its ring of endomorphisms @ and its group of automorphisms ¥.
Since the (1 — 1) transformations of a set are the only ones that possess two-
‘sided inverses, it is evident that ¥ is the group of units of . As an application
of this fact, we see that the group of automorphisms of the direct sum ¢ of n
infinite eyclic groups is isomorphie to the extended unimodular group of » X n
rational integral matrices having determinants 41 or —1. For we have seen
that the ring of endomorphisms of M is isomorphic to the ring of n X » rational
integral matrices, and by using the multiplicative property* of determinants, we
see that the units of the latter ring are the matrices of determinants =1;

2. Groups relative to a set of endomorphisms. In many algebraic problems <

we are interested in studying a group M relative to a fixed set of endomorphisms
@ acting in 9. We fix our attention on the subgroups, called Q-subgroups
(allowable), which are transformed into themselves by every endomorphism
belonging to ©. Although, in our applications, 3¢ will usually be an infinite
group, the following examples mdlcate that this point of view is fruitful evgn in
the study of finite groups,

Ezamples. 1) Q is vacuous. All subgroups are allowable. 2) Q consist§
of the inner automorphisms. Here the Q-subgroups are the invgy#emi_sub-
groups. 3) @ is the complete set of automorphlsms The Q- grouph?e’
the characteristic subgroups of 9.

We suppose now that I and @ are fixed. If N; and %g ar Q—subgroups,
evidently the intersection M A MN; is also an Q-subgroup. The join (N, , Na),
defined as the smallest subgroup ¢ontaining N, and Nz , may be characterized as
the set of finite sums of elements in 9, and N . It follows that (N, , N,) is an

Q-subgroup. If N is invariant, M, M) = N1 + Nz = N2 + Ny where Ny + Ns .

denotes the set of elements x; + 2, z:in N . s

If 9t is an Q-subgroup, the endomorphism a of € induces in 9 an endomorphism
which we shall also denote as . Of course, distinet mappings « and 8 in I
may coincide when regarded as mappings in . We note that if a8 = vy e
ora+ f = §¢Q, then these relatlons hold also for the mduced transformations
in N.

Now suppose that 0 and P are Q-subgroups and that P is invariant in N.
We consider the difference group consisting of the cosets B + y, y in N. If
a €@, a determines a transformation in ! — P in the followingway. If P + y
is an arbitrary coset, then the coset P + ya does not depend on the choice of the
représentative y and so it is uniquely determined by the coset P + y and by
the endomorphism a. Hence the correspondence B + y — B + yaisa single-
valued transformation. Again, we denote this transformation in # — P by «,
ie. (B + y)a = P + ya. It is clear that « is an endomorphism in N — P.
As in the case of subgroups, af = v or a + 8 = § in N implies the same relation
for the induced transformations in # — P. We may repeat these processes,
Jorming difference groups of difference groups, subgroups of difference groups,
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etc. In this way a whole hierarchy ® of groups is generated in which the
original endomorphisms « induce uniquely defined endomorphisms. We shall
call the members of R, Q-groups.

Let M and 9 be any two Q-groups. A mapping A of N into the whole of 5t :
is an Q-homomorphism if it is an ordinary homomorphism and a4 = Ae for all
a in @. Then N and N are Q-homomorphic® If A is (1 — 1), it is an Q-iso-
morphism and then N and N are Q-isomorphic. If N < N, we use the term 0-
endomorphism for -homomorphism and if } = N, we use the term Q-automorph-
i8m for Q-isomorphism. ’

3. The isomorphism theorems. Let N and P be Q-groups, P invariant in N.
It is well known that the correspondence  — P + z.is a homomorphism 4 .
between % and N — PB. Since (B + z)a = P + 2o, A = a4 and 4 is an
- Q-homomorphism. Now suppose that % and i are two Q-groups and that
z — & = zA is an -homomorphism between them. If P is the set of ‘elements
of N sent into 0, we know that P is an invdriant subgioup of N and that the
correspondence B + x — % = x4 is an isomorphism between (% — PB) and R.
Since (ya)A = (yA)a = 0a = 0if y ¢ B, P is an Q-subgroup and since (P + z)a=
< P + 2a) = (za)A = (zA)e, the isomorphism is an Q-isomorphism between
N—-B and 9. This proves the fundamental theorem on 2-homomorphisms:

CPHEEREM}.‘ If M and P are Q-groups and P is invariant in N, then N and
N — P are Q-lomomorphic. Conversely if N s Q-homomorphic to an Q-group
R and P is the;,set of elements mapped into0 by the homomorphism, B is an in-
- variant Q-subgroup of N and N — P and N are Q-isomorphic. -

If 4 is an Q-homomorphism between % and N and N is an Q-subgroup of N,
then its image R4 is an Q-subgroup of }. If R is invariant in N, R4 isinvariant
inRA = N. On the other hand, if & is an -subgroup of N and R is the set of
elements y of N such that yA4 e &, then R is an Q-subgroup of N containing P,
the set of elements mapped into 0 by the homomorphism. Again, the invariance
of & implies that of ®. If % is an Q-subgroup containing P, any element of N
mapped into an element of R4 isin R. Forif z4 = yA for z in N and y in R,
(*x—y)A =0andz — yeP. Hencexz = (x — y) + y e R. These results
may be stated as follows: 5

THEOREM 3. Let N be Q-homomorphic to N under the Q-homomorphism A and
let B be the set of elements mapped into 0 by A. Then the correspondence R —
NA = R is (1 — 1) between the Q-subgroups R containing B and the Q-subgroups
of R.  The group R is invariant in N if and only if R is invariant in N.

3IfM: (¢ = 1, 2) is a group and O; a fixed set of endomorphisms, we may define M, and N,
to be (2 , ©2)-homomorphic if there is a single-valued mapping z; — z; of 3, into the whole
of M- and a single-valued mapping a; — a; of Q into the whole of @, such that z, + n —
Ze + Y2, Trion — Taaa if 21 = 22, Yy, — Y2 and @y — as. This differs from the definition of
©-homomorphigm, for in the latter the mapping between the transformations is completely
determined by the original group M. The concept of Q-homomorphism is the important
one for our purposes.
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Now let R be an invariant Q-subgroup of ft. If we apply the 9-homomorphism
between N and ¥ — R after that between N and %N, we obtain an Q-homo-
morphism between % and # — R. The elements mapped into 0 of Nt — F
are those in . Hence we have the

Firsr IsoMorPHISM THEOREM. Suppose that N is ﬂ-homomorphw to N, and

let R be an invariant Q-subgroup of N and R the totality of elements mapped into N.

Then N — R and N — R are Sl-zsmnorphw
"Evidently this implies the

CoroLLARY. If R is an Q-subgroup of M contdining the invariant Q-subgroup

B of R and (R — PB) 18 invariant in (N — P), then R is invariant in N and N — R

18 Q-isomorphic to (M — PB) — (R — P).

Suppose that N, Nz, M, are Q-groups; N; < P, and N; invariant in MW, .
Then the smallest subgroup containing N; and M is N = Ny + N = N2 + Ny

- The group N; is invariant in N and the cosets in the difference group %" — N,

have the form 9 + z;, z; in N;. It follows that the correspondence z; —»
N2 + 21 is an Q-homomorphism between 9 and M — N, . Since the elements
mapped into 0 are those of ¥; A N: , we have the e

Seconp IsomorpHisM THEOREM. If N, Mo, My are Qgroups, N: < W °

and N, is tnvariant in My , then DNy + Mo = Mo + N1, 2) M A e ¥=3 mvanant
in Ny and 3) Ny + Ne) — Ny 18 Q-isomorphic to Ny — M A Ny). S e

4. The Jordan-Holder-Sclireier theorem. A chain of ﬂ-grm‘ps PNy = Dy

»;--->9Jt.+1 Olsanormalsmesforémllfeach‘m is invariant in 0., .

The difference groups M., — M; are called the factors of the series while a second
chain is a refinement of the first if it contains all of the M;. We shall call two
normal series equivalent if there is a (1 — 1) correspondence between their factors
such that the paired factors are Q-isomorphic.

THEOREM 4 (Schreier). Any two normal series for I, have equivalent reﬁnements

LetPh = - 2 Mey1 =0and Py =Ny = - -+ = Niyr = 0 be the two nor-
mal series. Deﬁne Py = Meyr + (DG A NY) forj =1,--,t+1landi =
L, -+, 8 M1 =0. Then My, 11 = Miprpand (D =) My = --- = My, =
Mo = --- 2y = -+ = My 2 0. Similarly, Set%,w = N1+ O A M)
fort = 1,‘ cere, 8 + 1 andj = 1, ce t, 9}:4.1,1 =0 and obtain 92;,,+1 = 9},'.;.1,1
and M =) 2 - Z2N2Nu=---2NW=---=%,.,=0 Thusin
each chain we have st + 1 terms. We may pair sm., — P, i1 thh Ni —
N ;41 to obtain the theorem as a consequence of the following

LEMMA (Za.ssenhaus) Let My, N1, Na ‘Rz , My be Q—groups where N; < iUh 5
N: < N and N’ is mvamant inNi. Then 9?1 + M A N2) is invariant in N, +
O A Ne), N2 + N2 A Ny) 8 invariant in %z + (M2 A M) and the corresponding
difference groups are Q-isomorphic.

By the Second Isomorphism Theorem, N2 A m; M2 A N A R is mvanant

'm N1 A JMaand Ry A Na) — (9?1 A N2) and (ER; + Ou A N2)) — m; are Q-iso-
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morphic. Similarly, R, A Ny is invariant in N; A Ny and hence NL A 922) e
Ot A Ns) is invariant. In the homomorphism between 9 A N: and (%1
O A N) — N1, the group (01 A ) + @ A 5)?2)) is mapped into. (0 A M)
+ M A M) + %1) — ‘Rl = (O A M) + N — 9?1. Hence by the above
corollary M A ER;) + M is invariant in O A ‘Jtz) 4= 5721 and M+ O A o)) —
O+ O A RN2))and O A ) — ((E)h A 923) + O A s)'l:z)) are Q-isomorphic.
By symmetry Ml AR — (O A mz) + (9?1 A N2)) and (9?2 + M A R)) —
O + O A 9?1)) are Q-isomorphic. Comparing the second members of these
isomorphic pairs, we obtain the lemma.

6. Chain conditions. If M is an Q-group, we shall at various tmes assume
one or both of the following finiteness conditions:

Descending chain condition. If R = Ny > N2 > - -+ where N; is an invariant
Q-subgroup of MN;_, , then the sequence has only a ﬁnite number of terms.

Ascending chain condition. N = Ny > --- > N = P > 0 is a normal
series for 9, then any chain of Q-subgroups 0 < B; < P, < - - - all of which are
invariant in P is finite. 5

Of course both chain conditions hold if N is of finite order. - On the other
hand,.we shall see that these conditions may be used in place of the assumption
of finitenegs of order to obtain extensions of some of the classical theorems on
ﬁmte groups to infinite Q-groups, The following examples prove the inde-
pendence of the two chain conditions.

Ezamples. 1) The additive group of tniegers. This group . satisfies the
ascending chaidl condition but not the descending chain condition. This is also
true for the direct sum of a finite number of infinite cyclic groups (Cf. Chapter
3, 3). _

2) The direct sum M of an infinite number of cyclic groups of order a prime p.t
Let z:, z2, - - - be a basis for M and let A be the endomorphism determined by
the equatlons 2nA = 0, 2.4 = 3;;. Then M satisfies the descending chain
condition relative to 2 = {A} but not the ascending chain condition. Another
example of this type is furnished by the commutative group with generators
Zy, &y, - - - satisfying the relations pz; = 0, pz; = z,;. Here we take Q to
be vacuous. : ‘

1t should be noted that if % is commutative, the ascending chain condition
assumes the simpler form that any chain 0 < $B; < P: < - - - of Q-subgroups of
N is finite in length. If either chain condition holds for an (arbitrary) R, then
it holds also for any invariant Q-subgroup B and for any difference group %t — P.
If both chain conditions hold, i has a composition series, i.e. a normal series
N =% > -+ > M > 0 that has no proper refinements. Thus a normal
series is a composition series if N;y > N: and Ny — N, is Q-irreducible in the
sense that it has no proper invariant Q-subgroups. To prove our assertion
let N’ be a proper-invariant Q-subgroup. If M — N is reducible, there is an
N invariant in N such that N > N’ > N’ > 0. Continuing in this way we

. ¢ Note that this group relative to the vacuous set of endomorphisms satisfies neither
chain condition. -
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obtain, after a finite number of steps, an invariant Q-subgroup N, of N = Ny
such that 9 — My is Q-irreducible. If we repeat this process for 9 , we obtain
an N5, etc. Then we have a normal series Ny > 9 > - - , and by the de-
scending chain condition this breaks off after a finite number of steps, yieldinga
composition series for 9. 58

If @ is the set of inner automorphisms, a composition series for 9 is called a
principal series and if @ is the complete set of automorphisms, we have a charac-
teristic series. The following extension of the Jordan-Hélder theorem implies,
in particular, the uniqueness (in the sense of isomorphism) of the factors of these
series as well as of ordinary composition series (2 vacuous).

THEOREM 5. Any two composition series for an Q-group N are equivalent.
This is an immediate consequence of Schreier’s theorem.

TeEOREM 6. A necessary and sufficient condition that an Q-group have a com-
position series is that it saiisfy both chain conditions. :

The sufficiency of this condition has already been proved. Now suppose
that N has a composition series of 2 terms. IfN = N > N2 > - - - is a descend-
ing chain of Q-subgroups, then there are at most h terms in this chain since
N >Ny > -+ > M > 0 is a normal chain and may be refined into a composi-
tion series having h terms. A similar argument applies to ascending chains.

If R > -+ > % > 0 is a composition series for 9 , then  is the length of
the group . Hence a group is Q-irreducible if and only if it has length one.
If N’ is an invariant Q-subgroup of N, , we may suppose that N’ ﬁ the term N4y
in a composition series. Then Ry has length b — k. By the First Isomorph-~
ism Theorem, (B, — Niy1) > <+ > Re — Meya) > 0 is a composition series
for !y — Mis1, and so the difference group has length k.

An Q-endomorphism 4 of N is normal if it commutes with all the inner auto-
morphisms of . Then for any @ and 2, —ad + 24 + @A = —a + zA + a.
Thus ed = a + c(a) where c(a) is an element that commutes with every element
of 4. If P is an invariant Q-subgroup, then BA is invariant in N for any
normal A. We note also that the product of normal endomorphisms is normal.

If A is any Q-endomorphism, the set 8, of elements z such that z4 = 0 is an
Q-subgroup. Evidently 0 < 8, £ 84 = ---. If Ba = B4+, we have
Bak+1 = Bue+s = ---. Thus in the chain 0 £ B, < 342 < --- we have either
the sign < throughout or we have this sign for & (= 0) terms and thereafter
equality. Now suppose that RA = N and 8, 5 0. Then B,: > B4. For,
each z in 8, has the form x4 for a suitable z and‘so zA = z4% = 0. Hence if
B4z = 84,24 = 0,ie.cveryz=0. Similarly we see that 0 < Ba<Ba< -,
Hence

ThEOREM 7. I N satisfies the ascending chain-condition and if ‘A 78 an endo-
morphism such that RA = N, then 3, = 0.

If A is a normal endomorphism, the chain # = N4 = N4’ = --- is a nor-
mal chain. We have either # > N4 > ---or N > N4 > .- > NA* =
"MA* = ..., The first of these alternatives certainly holds if B4 = 0 and



-

DIRECT SUMS 9

N > NA. For if NA* = NA*™, 24" = y4* for any = and a suitable y.
Hence (zA* — yA*™")A = 0 and z4* = y4*™,ie.NA*" = NA*. Thus we have

ToeorEM 8. If N satisfies the descending chain condition and if A is a normal
o S-endomorphism such'that 8. = 0, then M = NA. :

If we combine the two preceding theorems, we obtain

TaporEM 9. If 9 satisfies both chain conditions and if A is a normal Q-endo-
morphism, then either A is an automorphism or NRA < N and 3, = 0.

Assume again the ascending chain condition. Then0 < 8, < --- < B =
Bur+r =, - - - for a finite k. It follows that 8, A NA* =0. For if w is in this
intersection, w = zA* and wA* = 0. Hence 24* = 0 and since Bar = Bazs,
zA* = w = 0. SinceNA*" < NA*, A induces an Q-endomorphism in P = NA4*
and since there are no elements z in P other than 0 such that 24 =0, A is an
isomorphism between P and PA. Hence if D is any transformation in P such
that DA = 0, then D = 0. . Evidently. 4 induces a nilpotent endomorphism
(A* = 0)in Bus.

If A is normal and 9 satisfies the descending chain condition, we have it >
e >RA'=RNA"™ = ... If zis any element of N, zA’ = yA* for a suit-

-able y and so z = yd' + (—yd' + 2) = (& — yA) + yA'eNA' + B =
811 +NA’, The transformation induced by A in 3, is nilpotent. If D is
any transformation in 4’ such that AD = 0, where A is the induced endo-
morphism in R4%, then D = 0. - ‘ i

If both chain conditions hold, the integers k and ! of the last two paragraphs
are equal.  ForfA* A 8. = 0 and hence the only element of #4* mapped into
0by 4 is 0. Itfollows that NA* = NA**' so that I < k. On the other hand,

NA' = NA")A implies that RA' A B4 = 0. Thus if yA'™ = (ydhH4a =0, °
yA' = 0; hence Ban = Barand k < I. Hence we have proved the important

Lemma (Fitting). Suppose that both chain conditions hold for Nt and that A
18 a normal Q-endomorphism. Then for a suitable k we have N = NA* + B,
NA* A B» = 0 where A is nilpotent in 84+ and an automorphism in MA*. .~

Remark. We need not suppose that A is an Q-endomorphism in the above
discussion. . Instead let Q@ contain the inner automorphisms and let 4 satisfy
the condition that AQ = QA4, i.e. for each a in Q there is an o’ and an o’ in
such that 4a = o’A, ad = Ao”. Since Q contains the inner automorphisms,
Q-subgroups are invariant. The groups N4 and 8 are Q-subgroups and one
may carry over the above arguments without change. However, we shall
sketch a more direct proot of the final result. Consider the chains # > N4 = -« -

and 0 £ 8. S ---. The terms of these chains are Q-subgroups and so by
the chain conditions there is an integer m such that NA™ = NA™ = ... and
Bam = Bum+1 = -+, Set A™ = B. ThenNB = NB*, 35 = 35 and hence

by the chain conditions B A 3 = 0. If z is any element of %, zB* = yB for
a suitable yandsoz = yB + (—yB + z) e NB + 35.

6. Direct sums. In the remainder of this chapter we consider an Q-group %t
for which the endomorphisms in Q induce all of the inner automorphisms of RN.
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We shall also suppose that 9t satisfies both chain conditions. As we have seen,
the first assumption implies that every Q-subgroup is invariant and that Q-
endomorphisins are normal. The ascending chain condition may be stated in

the simpler form: Every ascending chain 0 < %; < 9, - - - terminates after a
finite number of terms.

We say that 9t is a direct sum of the sz-'subgmupssrz.- ,i=1, -+, hif
N =N + T )oY

and

WA+ F+Ra+Riat - +M) =

for all 2. The decomposmon is proper if all N; > 0. If no proper decomposx-»

tion exists other than N = N, N is indecomposable. We use the notation N =
@ --- @ Nuforadirect sum. Since the N, are invariant, N; + N, = N, + N

and we may equally well write = Ny @ --- @ My for any permutation
V,---, b of 1,---, h. If aeMN; and beN;, j # i, then the commutator

—a—b+a+beN: AN;=0. Hencea +b = b -+ a and any element of -

N commutes with any in N; .

A necessary and sufficient condition that # = 9%, ® --- @ N : where the _

N; are Q—subgroups, is that every z in M be expressible in one and only one way
in the form z, + -+ x5, z;inN; . This lmphes directly that if # = N, @

@ N, then 9?1 9?1 R, =M@ - @y, and if Ny = mh‘-n +

F Muyry, o0, W = Sﬁkw +k;-|+1 + + mb;+ -+&; 5 then ‘273 D -
N . Conversely, if ER NS @ 91: and N =@ - @ Ry, <+
N = Wk.+ kil D - @ mku— g, then M =M @ --- @ mh h =
kit -o-+ k.

If E)? N @ Ne, the Second Isomorphism Theorem implies that N, is Q-
isomorphic to ! — N, . Evidently the length of # = length N, + length N, .
If N, and N, are Q-subgroups of N such that M = N, + Nz, and N; = N, A N S
then M — Nz = O — M) @ m; Ns). It fOHOWS that '

length M + length (N; A N:) = length N; + length N, .

We may, of course, replace' t by Ny + 572: and obtain thls relation for arbitrary

Q-subgroups of N.
IN=M®---d M sothatwehave, for every &,z = o1 + -+ + a3,

z; in N; , then we deﬁne the mapping E; by zE; = z;. Since the expression for .

z is unique, F; is single valued. Ify =y + -+ +ypp,z +y = (@ + ) +
*+-+ (@ + ya). Hence (z + y)E; = zE; + yE:. If aeQ, ta = 20 +

* + Zaa so that aF; = Ea. The E; are therefore @-endomorphisms. Evi-
den*ly the following relations hold:

) . Ei=E., EE;=0if i%j E+---+E=1

i distinct, is an endomorphism.
An Q-endomorphism E that is idempotent (E* = E) will be called a projection.

.

 Wenote also that E; + E; = E; + E;and that any partialsum E;, + --- + B, , .
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The E; determined by the direct decomposition are of this type. Now suppose,
conversely, that the E; are arbitrary projections that satisfy (1). Then NE; = RN
are Q-subgroups such that # = N; @ --- @ Ny and the E; are the projections

_ determined by this decomposition. Furthermore if E is any projection and
3 18 the set of elements z such that zE = 0, then by Fitting’s lemma, or directly,
we have ! = NE @ Bz. Hence there is a projection E’ such that E + E’ =
E'+ E =1,EE' = B'E = 0. We shall call an idempotent element E of any
ring primitive if it is impossible to write E = E’ 4+ E” where E’ and E” are
idempotent elements =0 of the ring and E’'E"”” = E”E’ = 0. Thus N is in-
decomposable if and only if 1 is a primitive projection.

By Fitting’s lemma we have

TurorEM 10. Let N be an Q-group for which @ contains all the inner auto-
morphisms of N and both chain conditions hold. If N is indecomposable, then
any Q-endomorphism is either nilpotent or an automorphzsm

: 7. The Krull-Schmidt theorems. Suppose that 9 is decomposable so that
N=N1@D N>, N; 0. If Ny is decomposable, N; = Ny @ N and N =Ny @
Nie @ Po. Thus N > Ny > Ny = 0 and contmumg in this way, we obtain an
mdecomposable 27&1 asuchthat R =N, . O N;. We sunphfy the notation and -
write i = 921 ® 9 where 0, is indecomposable and =0. If N} is decomposable,
we have ml = 9% @ N; where 9, is indecomposable and 0. Then N = N @

Ne® N:. This process yields a descending chain 9%, > 95 > --- . Hence
it breaks off and we obtain M = N; @ --- ® Nx where the N; are indecomposable

~ and 0.

Now suppose that # = P; @ --- @ Py is a second decomposition where the
Q-subgroups PB; are mdecomposable and #0. Let E; and F; be the pro]ectlons
~ determined by the two decompositions. Since.any sum E’.‘ + -+ E; ,
im distinct, is an endomorphism, this is true also for AE; + —|— AE;, =
A(E; + -+ + E;) and EjA 4 «-- + E;A = (B, + --- + E;)A for
any endomorphxsm A. Tf we apply the endomorphism F;E, to 91, we obtain
an endomorphism in this group and we have F1E, + --- + F.E, = E, as the
identity in R, . We wish to show that at least one of the F iE1is an automorphism
in 9. This will follow from the following lemma.

LemMA. Let i be an Q-group for which Q contains all the inﬁer automorphisms’
of M and both chain conditions hold. If M is indecomposable and A and B are
Q-endomorphisms such that A + B =1, then either A or B is an automorphism.

Since A + B = 1 and A and B are endomorphisms, A*> + AB = A’ + BA
and hence AB = BA. If neither 4 nor B is an automorphism, both are nil-
potent. Then 1 =°'(4 + B)™ is a sum of terms of the type A'B*
where 7 +.8. = m. If m is sufficiently large, we have either A" = 0 or B* = 0,
and so we obtain the contradiction 1 = 0.

We apply this to F1E; = A and FoB; + -+ + FkEl B acting in 9, . If

F\E; is not. an automorphlsm, then B is and hence B exists. It follows that
'F:EB” + .- + FE,B™ = 1. FEither F2EB™ is an automorphism or
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FyE\B™ + ... + F.E\B'is. If we continue in this way, we obtain the result

that for some j, F;E;B7'C™" .-+ G is an automorphism where B ¢, ...

are automorphisms. It follows that FE, is an automorphism in ;. For
simplicity we write j = 1. ;

Consider the 2-homomorphism F; between R, and 9%,F; < ;. Since F1E;
'is an automorphism, F, is an isomorphism. Now 9,F; is an Q-subgroup of
P1, as is also P, , the subset of P, of elements z such that zE, = 0. Ifyisany
element of B, , yE, = wF,E, for some w in N; . Hence y = (y — wF,) + wF;
where y — wFyisin P, . Since P, A MF; = 0, this contradicts the indecom-
posability of B, unless B, = 0 and R\F; = PB,. Thus MF, = P, and hence F;
is an isomorphism between R, and P, and E, is an isomerphism between P,
and N, . We assert that Hy, = EyFy + E; + -+ + E, is an Q-endomorphism.
This is a consequence of the" following general -remark: Suppose that
NR=NED--@Mandthat N =N @ - -+ ® M) is an Q-subgroup of N. If
A; is an Q-homomorphism between N; and N; , then Eydy + - -+ 4. Fidx is an
Q~endomorphism in N. Our result follows by noting that B; A O + -+ +

M) =0s0othat N =P, + M+ - + (=P 0N D --- @ N. Since

zH, = 0 implies that z = 0, H, is an automorphism, i.e. W = N. J

Now suppose that we have already obtained a pairing between P, and N,
fors = 1, .-+, r such that E; is an Q-isomorphism between P: and N; and F;
is one between %; and PB;. Suppose also that N = B, @ -+ ® B,°® N1 @
- ® WM,and H, = E\Fy + --- + EF, + E,;y + -+ + E, is an auto-
morphism. Since the inner automorphisms of a difference group are induced

by inner automorphism of the group, # = N = (P, + -+ + B,) satisfies our
- conditions. We have '

ﬁ = ﬁr-{-l @"'@9—2» ot gBr-u (IR <) gt
whereJt: = (Br + - + B+ ) — B+ -+ B), By= B+ --- +

« B+ B) — (B + --- + B,) are Q-isomorphic to N; and P, respectively. By:

the above discussion we may pair $,,, with, say, %,,, so that the corresponding
projections E,,,, F..y are isomorphisms between P,,1 and N.... We also
have the equation R = P, 1 O N2 @ - OTn. Uz e (Pr4 -+ + Bri1) A

sz + -~ + ), thecoset 2 =2 + (Br + -+ + B) ePris A Rrua + .

-+ RNy). HenceZ=0andzePy+ --- + B, . Since (P14 =+ + B») A
P2+ - +M) =0,z =0. Thus . , :

‘7.$1+ + Bryr + Nt + ---,+§)’t,,‘= B® P DNy @ _..'me.

- Hence H.py = EF1+ -+ + E,yFopy + Erpg + -+ + Ejisan endomorphism'.
Since F,,, is an isomorphism between R,.: and Brirs 2o41Fra 5 0if 2,40 = 0
isin N,41. Hence zH,,; = 0 only if z = 0; H,4, is an automorphism and N =
Pr® - ® PBrta @ Ney2 @ ¢+ @ M. This proves the fgllowing theorems.

_Tueorem 11 (Krull-Schmidt). Let R be an Q-group such that Q contains all
the inner automorphisms and both chain conditions hold. Suppose that t = N, @
@MW =P D - @ Prare two decompositions of N as direct sums of in-



