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Preface

During their undergraduate education, students take various courses on fluid flow,
heat transfer, mass transfer, chemical reaction engineering and thermodynamics.
Most of the students, however, are unable to understand the links between the
concepts covered in these courses and have difficulty in formulating equations,
even of the simplest nature. This is a typical example of not seeing the forest for
the trees.

The pathway from the real problem to the mathematical problem has two
stages: perception and formulation. The difficulties encountered in both of these
stages can be easily resolved if students recognize the forest first. Examination of
trees one by one comes at a later stage.

In science and engineering, the forest is represented by the basic concepts,
i.e., conservation of chemical species, conservation of mass, conservation of momen-
tum, and conservation of energy. For each one of these conserved quantities, the
following inventory rate equation can be written to describe the transformation of
the particular conserved quantity ¢ :

Rate of Rate of Rateof ¢ \ Rate of ¢
( @ in ) B ( © out ) + ( generation ) - ( accumulation )
in which the term ¢ may stand for chemical species, mass, momentum or energy.

My main purpose in writing this textbook is to show students how to translate
the inventory rate equation into mathematical terms at both the macroscopic and
microscopic levels. It is not my intention to exploit various numerical techniques
to solve the governing equations in momentum, energy and mass transport. The
emphasis is on obtaining the equation representing a physical phenomenon and its
interpretation.

I have been using the draft chapters of this text in my third year Mathematical
Modelling in Chemical Engineering course for the last two years. It is intended as an
undergraduate textbook to be used in an (Introduction to) Transport Phenomena
course in the junior year. This book can also be used in unit operations courses in
conjunction with standard textbooks. Although it is written for students majoring
in chemical engineering, it can also be used as a reference or supplementary text

in environmental, mechanical, petroleum and civil engineering courses.
The overview of the manuscript is shown schematically in the figure below.

vii
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PREFACE ix

Chapter 1 covers the basic concepts and their characteristics. The terms ap-
pearing in the inventory rate equation are discussed qualitatively. Mathematical
formulations of “rate of input” and “rate of output” terms are explained in Chap-
ters 2, 3 and 4. Chapter 2 indicates that the total flux of any quantity is the sum
of its molecular and convective fluxes. Chapter 3 deals with the formulation of the
inlet and outlet terms when the transfer of matter takes place through the bound-
aries of the system by making use of the transfer coefficients, i.e., friction factor,
heat transfer coefficient and mass transfer coefficient. The correlations available in
the literature to evaluate these transfer coeflicients are given in Chapter 4. Chapter
5 briefly talks about the rate of generation in transport of mass, momentum and
energy.

Traditionally, the development of the microscopic balances precedes the macro-
scopic balances. However, it is my experience that students grasp the ideas better
if the reverse pattern is followed. Chapters 6 and 7 deal with the application of
the inventory rate equations at the macroscopic level.

The last four chapters cover the inventory rate equations at the microscopic
level. Once the velocity, temperature or concentration distributions are determined,
the resulting equations are integrated over the volume of the system to get the
macroscopic equations covered in Chapters 6 and 7.

I had the privilege of having Professor Max S. Willis of the University of
Akron as my Ph.D supervisor who introduced me to the real nature of transport
phenomena. All that I profess to know about transport phenomena is based on the
discussions with him as a student, a colleague, a friend and a mentor. His influence
can be easily noticed throughout this book. Two of my colleagues, Giiniz Giiriiz
and Zeynep Higsagmaz Katnasg, kindly read the entire manuscript and made many
helpful suggestions. My thanks are also extended to the members of the Chem-
ical Engineering Department for their many discussions with me and especially
to Timur Dogu, Tiirker Giirkan, Giirkan Karakas, Onder Ozbelge, Canan Ozgen,
Deniz Uner, Levent Yilmaz and Hayrettin Yiicel. I appreciate the help provided by
my students, Giillden Camgi, Yesim Giichilmez and Ozge Oguzer, for proofreading
and checking the numerical calculations.

Finally, without the continuous understanding, encouragement and tolerance of
my wife Ayse and our children, Cigdem and Burcu, this book could not have been
completed and I am grateful indeed.

Suggestions and criticisms from instructors and students using this book will
be appreciated.

ISMAIL TOSUN (itosun@metu.edu.tr)
Ankara, Turkey
March 2002
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Chapter 1

Introduction

1.1 BASIC CONCEPTS

A concept is a unit of thought. Any part of experience that we can organize into
an idea is a concept. For example, man’s concept of cancer is changing all the time
as new medical information is gained as a result of experiments.

Concepts or ideas that are the basis of science and engineering are chemical

species, mass, momentum, and energy. These are all conserved quantities. A
conserved quantity is one which can be transformed. However, transformation does
not alter the total amount of the quantity. For example, money can be transferred
from a checking account to a savings account but the transfer does not affect the
total assets.
" For any quantity that is conserved, an inventory rate equation can be written to
describe the transformation of the conserved quantity. Inventory of the conserved
quantity is based on a specified unit of time, which is reflected in the term, rate.
In words, this rate equation for any conserved quantity ¢ takes the form-

Rate of _ Rate of + Rate of
input of ¢ output of ¢ generation of ¢
Rate of
- ( accumulation of ¢ ) (1.1-1)

Basic concepts, upon which the technique for solving engineering problems is
based, are the rate equations for the

o Conservation of chemical species,
e Conservation of mass,
e Conservation of momentum,

e Conservation of energy.
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The entropy inequality is also a basic concept but it only indicates the feasibility
of a process and, as such, is not expressed as an inventory rate equation.

A rate equation based on the conservation of the value of money can also be
considered as a basic concept, i.e., economics. Economics, however, is outside the
scope of this text.

1.1.1 Characteristics of the Basic Concepts

The basic concepts have certain characteristics that are always taken for granted
but seldom stated explicitly. The basic concepts are

e Independent of the level of application,

e Independent of the coordinate system to which they are applied,

e Independent of the substance to which they are applied.

The basic concepts are applied both at the microscopic and the macroscopic

levels as shown in Table 1.1,

Table 1.1 Levels of application of the basic concepts.

Level Theory Experiment

Microscopic  Equations of Change Constitutive Equations

Macroscopic Design Equations Process Correlations

At the microscopic level, the basic concepts appear as partial differential equa-
tions in three independent space variables and time. Basic concepts at the micro-
scopic level are called the equations of change, i.e., conservation of chemical species,
mass, momentum and energy.

Any mathematical description of the response of a material to spatial gradients
is called a constitutive equation. Just as the reaction of different people to the same
joke may vary, the response of materials to the variable condition in a process
differs. Constitutive equations are postulated and cannot be derived from the
fundamental principles!. The coefficients appearing in the constitutive equations
are obtained from experiments.

Integration of the equations of change over an arbitrary engineering volume
which exchanges mass and energy with the surroundings gives the basic concepts
at the macroscopic level. The resulting equations appear as ordinary differential
equations with time as the only independent variable. The basic concepts at this
level are called the design equations or macroscopic balances. For example, when
the microscopic level mechanical energy balance is integrated over an arbitrary

! The mathematical form of a constitutive equation is constrained by the second law of ther-
modynamics so as to yield a positive entropy generation.
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engineering volume, the result is the macroscopic level engineering Bernoulli equa-
tion.

Constitutive equations, when combined with the equations of change, may or
may not comprise a determinate mathematical system. For a determinate math-
ematical system, i.e., number of unknowns = number of independent equations,
the solutions of the equations of change together with the constitutive equations
result in the velocity, temperature, pressure, and concentration profiles within the
system of interest. These profiles are called theoretical (or, analytical) solutions. A
theoretical solution enables one to design and operate a process without resorting
to experiments or scale-up. Unfortunately, the number of such theoretical solutions
is small relative to the number of engineering problems which must be solved.

If the required number of constitutive equations is not available, i.e., number of
unknowns > number of independent equations, then the mathematical description
at the microscopic level is indeterminate. In this case, the design procedure appeals
to an experimental information called process correlation to replace the theoretical
solution. All process correlations are limited to a specific geometry, equipment
configuration, boundary conditions, and substance.

1.2 DEFINITIONS

The functional notation
p=p(tz,y,2) (1.2-1)

indicates that there are three independent space variables, x, y, z, and one inde-
pendent time variable, t. The ¢ on the right side of Eq. (1.2-1) represents the
functional form, and the ¢ on the left side represents the value of the dependent
variable, ¢.

1.2.1 Steady-State

The term steady-state means that at a particular location in space, the dependent
variable does not change as a function of time. If the dependent variable is ¢, then

Op _
(E)m,y,z =0 (12-2)

The partial derivative notation indicates that the dependent variable is a func-
tion of more than one independent variable. In this particular case, the independent
variables are (z, y, 2) and t. The specified location in space is indicated by the
subscripts (z, y, z) and Eq. (1.2-2) implies that ¢ is not a function of time, t.
When an ordinary derivative is used, i.e., dp/dt = 0, then this implies that ¢ is a
constant. It is important to distinguish between partial and ordinary derivatives
because the conclusions are very different.



