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Preface

The demands of modern technology have produced a need for scientists to
solve numerical initial and boundary value problems involving systems of
ordinary differential equations. As a result a multitude of finite difference
techniques have been proposed for dealing with these problems. The advent of
modern computers gave many of these techniques wide application and
consequently a set of ad hoc procedures which were known to be useful for
practical computation, in some rather vague sense, were developed. For a
long time, however, the theoretical aspects of these finite difference schemes
remained neglected. Probably the first really successful attempt to establish
finite difference schemes on a firm theoretical basis arose from the work of
Dahlquist and Henrici. The latter author’s book, published in 1962, has
become a cornerstone for the basic theory of discretisation methods for
ordinary differential equations. In a more recent book Stetter (1973) has
produced a general framework which encompasses many of these methods
and, as a consequence, the classical 1 — 0 theory of discretisation methods
seems to be in a relatively satisfactory state. However, both Henrici and
Stetter, amongst many others, have noted that there is at least one class of
equations, namely stiff systems of equations, for which this analysis is
inappropriate and which requires rather special treatment.

A great deal of the early theory relating to stiff systems of equations was
developed by Dahlquist. This culminated in his classic theorem that “An A4-
stable linear multistep method must be implicit and must have an order of
accuracy less than or equal to 2”. Implicit in the proof of Dahlquist’s theorems,
although not usually stated when his results are quoted, is the requirement
that the desired solution of the linear multistep method in question has to be
generated directly in the conventional way. It is usually the case that it is better
to use an efficient direct method, if available, rather than an indirect one.
However, as an immediate consequence of Dahlquist’s and similar theorems,

most reasonable finite difference methods for the numerical solution of stiff
\%
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systems of non-linear ordinary differential equations are essentially iterative.
Thus it is natural to ask whether or not improvements in the stability
properties of our schemes could be obtained if the solution were to be
generated from the outset using an iterative technique. As we shall show in
Chapter 3, if the required solution is generated using a precisely defined
iteration scheme acting on the linear multistep method itself, it is possible to
derive schemes which are A-stable and which have an order of accuracy
greater than 2 and also to derive convergent linear k-step methods with orders
of accuracy greater than 2[k/2] + 2.

In this text we examine various classes of iteration schemes in the hope of
developing finite difference procedures which can be used for the efficient
numerical integration of systems of ordinary differential equations. It is
pointed out that it is not meaningful merely to state whether or not a particular
linear multistep method is stable. The precise way in which the required
solution is to be generated must be stated and only then can the stability
properties of the complete method (= discretisation scheme + precise
method of generating the required solution) be discussed.

The text is intended mainly for scientific research workers and requires very
few pre-requisites apart from a knowledge of some of the basic analytic
properties of difference and differential equations. It is not meant as an
introduction to finite difference methods but it is hoped that the material
presented will help the reader to deepen his understanding of this particular
class of methods. One of the key observations is that the well known class of
finite difference schemes based on linear multistep methods, with which the
reader should be familiar, is merely a particular case of a much wider class of
integration procedures which are examined in detail in the forthcoming
chapters.

As the title suggests, my main aim in writing this book has been to bring
together algorithms for the efficient numerical integration of stiff systems of
ordinary differential equations since this is one particular area where the
existing theory is far from satisfactory. At several points in the text, however, I
have departed from this basic aim and have considered the development of
algorithms for the solution of various non-stiff systems in cases where it has
seemed that an iterative approach may be valuable. Several of the algorithms
have proved difficult to analyse with complete mathematical rigour and it has
been necessary to rely almost entirely on numerical evidence to demonstrate
their potential. I have, however, not worried too much if an algorithm is not
backed up by the necessary mathematical theory. Rather I have proposed the
algorithm in the hope that this will stimulate further research. In view of this,
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the present text is not in a “cut and dried” form, but contains numerous open
ended questions which seem to merit further investigation. Indeed, for this
reason I have at several points deliberately suggested algorithms with virtually
no theoretical backing (but with numerical results to demonstrate their
potential usefulness). At many points in the text I have illustrated particular
algorithms by applying them to fairly simple test problems, since it is often the
case that the actual mechanics of an algorithm become more transparent if it is
applied to a simple, rather than a complicated problem. I have, however, been
careful to ensure that the algorithms derived also perform reasonably well on
more complicated problems of practical interest.

In Chapter 1 some of the relevant theory relating to the stability properties
of discretisation schemes and linear recurrence relations is introduced.
Classically the theories of finite difference integration schemes and recurrence
relations have been developed separately and one of the main purposes of this
text is to examine and exploit as much as possible the interrelationships
between these two theories. In Chapter 2 we examine in more detail the theory
behind the numerical solution of linear recurrence relations, since many of our
ideas for the solution of ordinary differential equations come from this source.
In the first part of Chapter 2 we consider Olver’s algorithm for the numerical
solution of second order linear recurrence relations and examine its extension
to vector equations. Although Olver’s algorithm is extremely efficient for this
particular class of problems it does seem to have the drawback that it cannot
be extended directly to deal with non-linear equations. In order to overcome
this difficulty an iterative method of solution is derived and this has the
advantage that, as well as being reasonably efficient for linear problems, it may
be extended directly to an important class of non-linear equations. In Section
2.5 we consider the extension of these iterative techniques to the solution of
higher order recurrence relations and as a result a class of algorithms based on
the Gauss-Seidel approach is constructed. In the non-linear case it is neces-
sary to use two distinct iteration schemes, which we have referred to as the
primary and the secondary schemes, and it is shown that a one-step Gauss-
Seidel—modified-Newton scheme is efficient for the solution of our non-linear
equations. Finally in Chapter 2 we consider a completely different class of
iteration schemes which do not have as wide a range of application as those
considered earlier but which do have very important practical applications
in the numerical solution of ordinary differential equations.

In Chapter 3 we consider the extension of some of the recurrence relation
techniques derived in the previous chapter to the numerical solution of systems
of ordinary differential equations. Although, as previously mentioned, our
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main interest is in developing algorithms for the numerical solution of stiff
systems, for the sake of completeness we start our analysis in Chapter 3 with a
discussion of the non-stiff case. A class of algorithms based on one-step
Gauss-Seidel -direct-iteration schemes is developed and it is shown that these
are often satisfactory for the solution of our problem. Also considered in
Section 3.2 is the class of conventional Adams predictor—corrector schemes
used in PECE mode and it is shown that these schemes may be extended in a
natural way to yield a more general class of Adams integration schemes. In
Section 3.4 we examine in more detail the stability aspects of our iterative
integration procedures. It will have become clear by the time that this stage of
the text is reached that the existing theory is not sufficient to cover iterative
methods, since different ways of generating the required solution often give rise
to methods with differing stability properties. A new concept of iterative
absolute stability is derived and this helps us to recognise iterative algorithms
suitable for the integration of ordinary differential equations. In Section 3.5 a
class of iterative algorithms based on a Gauss—Seidel approach is developed
for the integration of stiff systems. Although we are not quite able to achieve
full A-stability, a class of schemes which behave like either one- or two-step
methods, have high orders of accuracy, and have infinite regions of absolute
stability is derived and this class is shown to be useful for the integration of stiff
systems. In Section 3.6 we consider a somewhat different approach based on
the class of iteration procedures developed in Section 2.7. This approach is
rather unusual in that the finite difference schemes in question are not solved
exactly and the primary iteration scheme is only applied a fixed number of
times—usually once. Also in this section a close correspondence is derived
between our algorithms and the method of deferred correction originally
developed by Fox. The approach does have practical significance since it
allows us to develop A-stable schemes of order greater than two. In Section
3.12 we consider the extension of some of the techniques developed earlier in
Chapter 3 to deal with the numerical solution of second order equations. The
algorithms derived do not have a firm theoretical basis and as a result it is
necessary to rely mainly on numerical evidence to demonstrate their potential.
In particular an attempt is made to extend Olver’s analysis to derive
“quadratic factors” of high order linear recurrence relations and this is another
area where further research is called for. Finally, in Section 3.13 some of the
iterative techniques developed for ordinary differential equations are extended
to deal with the heat conduction equation with non-derivative boundary
conditions. Although only relatively few numerical experiments have been
carried out with these particular algorithms, the results obtained do seem to
indicate that the approach is promising. It is once more hoped that the
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algorithms will serve to stimulate further research, although there is an
obvious need for additional theoretical results.

In Chapter 4 we consider a radically different approach to the solution of
stifl systems. We extend some of the procedures developed in Chapter 2 to
produce a class of iterative algorithms which are applied directly to the system
of differential equations itself rather than to an approximating discretisation
method. This class of procedures has a much more limited range of application
than the algorithms derived in previous chapters, since it requires the system to
have a special structure. For systems which do possess this structure, and these
are quite common in practice, the algorithms are particularly powerful since
they do not involve truncation error. In the second half of Chapter 4 we
consider the relationships between these iterative algorithms and certain other
widely used methods based on singular perturbations and pseudo-steady-state
approximations. The main practical difficulties associated with these last two
classes of methods are discussed in some detail and it is shown how the
algorithms developed in the first half of Chapter 4 overcome most of these
difficulties. Finally, in the last part of Chapter 4 we consider algorithms for the
solution of certain classes of second order equations which cannot easily be
solved using finite difference techniques. In particular an efficient algorithm is
derived for the solution of certain problems having a Jacobian matrix
possessing at least one eigenvalue with a large imaginary part.

I should like to take this opportunity of expressing my thanks to the
numerous people who have influenced my thinking on this subject. I was
fortunate indeed to be able to spend some time with Professor Hans Stetter in
Vienna and without his constant help and encouragement during the early
stages of the preparation of the manuscript this book would surely never have
been written. Also I should like to mention the tremendous help received from
Professor F. W. J. Olver and Drs R. V. M. Zahar and J. C. P. Miller, all of
whom taught me a great deal about recurrence relations. I am pleased to be
able to thank Professor Richard Bellman for asking me to write this book,
Professor John Whiteman for placing this book in his series and for his
tremendous help in editing the manuscript, Academic Press for their technical
advice during the preparation of the manuscript and Mrs Sandra Place for her
excellent typing from an almost unintelligible script. Finally I would like to
thank my wife, Roslyn, for her love and understanding during the time spent
writing this book and (if I may steal an apt sentiment from the introduction of
a book by H. J. Stetter, 1973) if there is anyone at all who will rejoice at the
appearance of this text it will be her.

January 1978. J.C.
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1

Some Interrelationships Between
the Theories of Recurrence
Relations and Ordinary
Differential Equations

1.1 Introduction

Traditionally the techniques and theories relating to the solution of linear
recurrence relations and to the numerical solution of initial value problems in
ordinary differential equations (O.D.E.s) using linear multistep methods,
although often closely related, have usually developed along slightly different
lines. Algorithms for the numerical solution of linear recurrence relations are
usually designed so as to be able to generate any desired solution which is
uniquely specified in advance by means of certain initial conditions (even
though this problem may be very badly posed initially). However, when
solving O.D.E.s using finite difference methods it is usual to assume that the
required solution is in some sense dominant, at least for small values of the
steplength of integration. The main purposes of the present text are to examine
in some detail the interrelationship between these two theories and also to
develop a different approach to the numerical solution of O.D.E.s by
exploiting the theory of linear recurrence relations. In particular we shall
develop classes of iterative techniques which do not demand that the required
solution of the system of differential equations being solved is in any sense a
dominant solution of the finite difference scheme being used and which
converge rapidly to the required solution for a large set of initial
approximations. These techniques produce satisfactory results for the
integration of stiff initial value problems using linear multistep methods even

1



2 1 Recurrence relations and ordinary differential equations

when these are not zero-stable. This approach also enables us to develop
schemes which are based on linear multistep methods and which are A-stable
with order greater than two.

As an introduction this chapter starts with a brief survey of some of the
relevant theory relating to the solution of linear recurrence relations and ends
with an analysis of some of the stability aspects of linear multistep methods.

1.2 Some results from the theory of linear recurrence relations

Consider first the solution of the k'™ order linear recurrence relation
k

Y. ain)ya.; = gn), (L.1)
j=0
where the a;(n) and g(n) are given sequences of the non-negative integer
variable n with g, (n) # 0 for any n in the region of interest. Any solution, y,, of
(1.1) may be expressed in the general form
k

Yo=Y CiVin+ Dus (1.2)

i=1
where the y;,, i = 1(1)k, are any k linearly independent solutions of the
homogeneous part of (I1.1)—ie. equation (1.1) with g(n) = 0—p, is any
particular solution of (1.1) and the ¢; are arbitrary constants. The linearly
independent set (y ,,...,Vx..) Will henceforth be referred to as a basis for the
solution of (1.1), and any member y; ,, of this set will be called a basis solution.
Any basis solution y, , having the property that

lim (y; ,/y;,) =0foralli=23,... k

n—*oc

and (1.3)

lim (p,/yy,) =0

nox
will be called dominant at infinity or simply dominant and it will be assumed
that it is possible to choose p, and the y; , so that there is a basis solution, Vi
which is dominant. Most of the analysis could be extended to include the case
where there are two or more independent dominant solutions, e.g. where the
largest roots of the characteristic equation (in the constant coefficient case)
comprise a conjugate complex pair. We shall, however, restrict ourselves to the
case where there is a single dominant solution since, as will be seen later, this is
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the case that is of most concern when differential equations are integrated
using linear multistep methods. Any solution y, of (1.1) containing a non-zero
multiple of y, , will be called a dominant solution. When this is not so, y, will
be called a non-dominant solution of (1.1). If any k consecutive values of
v;,J = 0(1)k — 1, are given initially, the constants c; in (1.2) are completely
specified and a unique solution of (1.1) is defined. This unique solution could
be generated recursively from the given initial conditions by using (1.1) in the

form —

Yntk = (l/ak(n)){g(n) - 2 aj(n)y,,+,} n=0,12,..., (1.4)

j=0

where the right hand side of (1.4) is known when needed for all n. Equation
(1.4) will be referred to as a direct method for generating the solution of (1.1).

Although, as previously mentioned, the required solution of (1.1) is in theory
completely specified by any given k consecutive values of y,, an unstable build
up of rounding errors can often render (1.4) completely ineffective as a numerical
method for the solution of (1.1). This is invariably so if the required solution is
a non-dominant one. This can be seen if it is assumed that we require to
compute a solution j, of (1.1) which is such that

k
Y= Z CiYin t P> c; #0.
i=2
The effect of rounding, which is in general inevitable on an automatic machine,
means that a perturbed solution J, of (1.1) is computed, and this has the form
k

JA/,, = Z éiyi,n + pn, é1 # 0

i=1

In the early stages, the term ¢,y, , is very small and has a magnitude which
depends on the accuracy to which the calculations are performed. The relative
error, e,, in y, is given by

€n = (.}_)n _j}n)/.}jm

k K
= {Z (ci — z’i)yi,n}/{_z CiVin + Dn }’

k k
. {—51 + ¥ lg—= 51')}’;',"/)’1,"}/{ Y CiVinlVin + Pn/}ﬁ,n}-
i=2 i=2
From (1.3) it follows that |e,| — oo as n — 0. From this we see that the relative
error in our approximation to j, increases without bound as n — co. If
c¢j,j > 1,1s the first non-zero coefficient appearing in (1.2) then the calculation,
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using (1.4), of any y, approximating the y, of (1.2) will be liable to such a large
accumulation of round-off error as to render the whole procedure totally
ineffective. Gautschi (1967) has given some spectacular examples of such
instability. Clearly there is a-need for special methods for approximating y, if
any solution other than a dominant one is required. This has motivated recent
research into the development of algorithms for computing non-dominant
solutions of (1.1), which has been mainly directed at replacing the original
initial value problem by a mathematically equivalent, well conditioned
boundary value problem. Such a replacement may be done by abandoning an
appropriate number, k — m, of the initial conditions and requiring instead that
the solution should vanish at k — m points sufficiently far outside the region of
interest. It is very important to note that we do not require the solution which
we are computing necessarily to tend to zero for large n. (Indeed, it is often
possible using this approach to compute non-dominant solutions which
increase without bound as n increases.)

The requirement that the desired solution should vanish outside the range
of interest, in the absence of any further information, is a convenient com-
putational procedure. However, if we do have some knowledge of how the
required solution behaves for large n, such as via an asymptotic expansion, it
is usually better to use this information to define new boundary conditions
rather than simply to set them equal to zero. In certain circumstances it can
be shown that the solution of this re-posed boundary value problem is a
good approximation to the required solution of the original initial value
problem over any given finite range providing the new boundary conditions
are set “sufficiently far” outside the far end of this range. The case k = 2 of
linear second order recurrence relations will be considered in the next chap-
ter. There it will be shown that, before any solution values have been com-
puted, the optimal positioning of the boundary conditions to obtain a given
degree of precision over a specified range for any particular problem can be
determined. For the case k > 2, however, the optimal positioning of the boun-
dary values ab initio is still largely an unsolved problem. In order to recognise
that direct methods of solution are unstable, and to be able to select an
appropriate value for m, it is necessary in general to have some additional
knowledge regarding the behaviour of the required solution. This knowledge
need not necessarily be enough to enable the boundary conditions to be set
more accurately, but it should be enough to enable the wrong solution to be
detected during a computation. As a result, the theory for the case k > 2 is
mainly of use in the field of ordinary differential equations. An important
practical case is that in which a basis may be chosen so that y;,, dominates
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Yive1nfori=1,2,...,k — 1 as n increases, in the special sense that

|yi,n+1/yi,n| > |yi+ l,n+1/yi+l.n| (i=12...,k—1;n= 1; 255500

where |y 4 1 o/Vinl = 0asn — x for all i.

In this case it is usually possible to state that the re-posed problem does have
a solution closely approximating that of the original problem (Oliver, 1968a).
Furthermore for this situation, all the complementary functions may be
ranked in a complete hierarchy of dominance with the basis solution y; , being
the i'" in the order. Equations for which we are able to pick out a dominant
basis solution have important practical applications in the numerical solution
of initial value problems for ordinary differential equations using linear
multistep methods. The implications of this will be considered later. However,
we first examine some of the analogies between the classical stability theory
relating to linear multistep methods and certain parts of the basic theory of
linear recurrence relations as outlined above.

1.3 Some stability aspects of linear multistep methods

We consider first of all the numerical solution, using a linear k-step method, of
the system of first order ordinary differential equations

dy
. —f(x,y), 1.5
g = fley (1.5)
with initial condition y(x,) = y,. The linear k-step method has the form
k k
Y apes =h S B (16
j=0 j=0

where o; and B; are constants and where it is assumed that a, # 0 and that
o, and B, are not both zero. Here we have used a notation consistent with
common usage so that h is a positive constant called the steplength of integra-
tion, y,,; is the approximate numerical solution obtained at the point
Xn+j = Xo + (n+ j)h and f,,; =f(x,+;,¥.+;). Equation (1.6) will also be
normalised in the usual way by assuming that %, = 1. If we now introduce the
first and second characteristic polynomials, denoted by p(d) and o(d)
respectively, associated with (1.6) as

k

p(d) = Z fjéj,

=0

o) = Y. B,



