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Bayesian Nonparametrics

Bayesian nonparametrics works — theoretically, computationally. The theory provides
highly flexible models whose complexity grows appropriately with the amount of data.
Computational issues, though challenging, are no longer intractable. All that is needed
is an entry point: this intelligent book is the perfect guide to what can seem a forbidding
landscape.

Tutorial chapters by Ghosal, Lijoi and Priinster, Teh and Jordan, and Dunson advance
from theory, to basic models and hierarchical modeling, to applications and implemen-
tation, particularly in computer science and biostatistics. These are complemented by
companion chapters by the editors and Griffin and Quintana, providing additional mod-
els, examining computational issues, identifying future growth areas, and giving links
to related topics.

This coherent text gives ready access both to underlying principles and to state-
of-the-art practice. Specific examples are drawn from information retrieval, neuro-
linguistic programming, machine vision, computational biology, biostatistics, and bio-
informatics.
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An invitation to Bayesian nonparametrics
Nils Lid Hjort, Chris Holmes, Peter Miiller and Stephen G. Walker

This introduction explains why you are right to be curious about Bayesian nonparametrics —
why you may actually need it and how you can manage to understand it and use it. We also
give an overview of the aims and contents of this book and how it came into existence,
delve briefly into the history of the still relatively young field of Bayesian nonparametrics,
and offer some concluding remarks about challenges and likely future developments in the
area.

Bayesian nonparametrics

As modern statistics has developed in recent decades various dichotomies, where
pairs of approaches are somehow contrasted, have become less sharp than they
appeared to be in the past. That some border lines appear more blurred than a gen-
eration or two ago is also evident for the contrasting pairs “parametric versus non-
parametric” and “frequentist versus Bayes.” It appears to follow that “Bayesian
nonparametrics” cannot be a very well-defined body of methods.

What is it all about?

Itis nevertheless an interesting exercise to delineate the regions of statistical method-
ology and practice implied by constructing a two-by-two table of sorts, via the two
“factors” parametric—nonparametric and frequentist-Bayes; Bayesian nonparamet-
rics would then be whatever is not found inside the other three categories.

(1) Frequentist parametrics encompasses the core of classical statistics, involving
methods associated primarily with maximum likelihood, developed in the 1920s
and onwards. Such methods relate to various optimum tests, with calculation of
p-values, optimal estimators, confidence intervals, multiple comparisons, and so
forth. Some of the procedures stem from exact probability calculations for mod-
els that are sufficiently amenable to mathematical derivations, while others relate
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to the application of large-sample techniques (central limit theorems, delta meth-
ods, higher-order corrections involving expansions or saddlepoint approximations,
etc.).

(ii) Bayesian parametrics correspondingly comprises classic methodology for
prior and posterior distributions in models with a finite (and often low) number of
parameters. Such methods, starting from the premise that uncertainty about model
parameters may somehow be represented in terms of probability distributions, have
arguably been in existence for more than a hundred years (since the basic theorem
that drives the machinery simply says that the posterior density is proportional to
the product of the prior density with the likelihood function, which again relates
to the Bayes theorem of c. 1763), but they were naturally limited to a short list of
sufficiently simple statistical models and priors. The applicability of Bayesian para-
metrics widened significantly with the advent and availability of modern computers,
from about 1975, and then with the development of further numerical methods and
software packages pertaining to numerical integration and Markov chain Monte
Carlo (MCMC) simulations, from about 1990.

As for category (i) above, asymptotics is often useful for Bayesian parametrics,
partly for giving practical and simple-to-use approximations to the exact posterior
distributions and partly for proving results of interest about the performance of the
methods, including aspects of similarity between methods arising from frequen-
tist and Bayesian perspectives. Specifically, frequentists and Bayesians agree in
most matters, to the first order of approximation, for inference from parametric
models, as the sample size increases. The mathematical theorems that in vari-
ous ways make such statements precise are sometimes collectively referred to as
“Bernshtein—von Mises theorems”; see, for example, Le Cam and Yang (1990,
Chapter 7) for a brief treatment of this theme, including historical references going
back not only to Bernshtein (1917) and von Mises (1931) but all the way back
to Laplace (1810). One such statement is that confidence intervals computed by
the frequentists and the Bayesians (who frequently call them “credibility inter-
vals”), with the same level of confidence (or credibility), become equal, to the
first order of approximation, with probability tending to one as the sample size
increases.

(iii) Frequentist nonparametrics is a somewhat mixed bag, covering various
areas of statistics. The term has historically been associated with test procedures
that are or asymptotically become “distribution free,” leading also to nonparametric
confidence intervals and bands, etc.; for methodology related to statistics based
on ranks (see Lehmann, 1975); then progressively with estimation of probability
densities, regression functions, link functions etc., without parametric assumptions;
and also with specific computational techniques such as the bootstrap. Again,
asymptotics plays an important role, both for developing fruitful approximations
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and for understanding and comparing properties of performance. A good reference
book for learning about several classes of these methods is Wasserman (2006).

(iv) What ostensibly remains for our fourth category, then, that of Bayesian non-
parametrics, are models and methods characterized by (a) big parameter spaces
(unknown density and regression functions, link and response functions, etc.) and
(b) construction of probability measures over these spaces. Typical examples in-
clude Bayesian setups for density estimation (in any dimension), nonparametric
regression with a fixed error distribution, hazard rate and survival function estima-
tion for survival analysis, without or with covariates, etc. The divisions between
“small” and “moderate” and “big” for parameter spaces are not meant to be very
sharp, and the scale is interpreted flexibly (see for example Green and Richardson,
2001, for some discussion of this).

It is clear that category (iv), which is the focus of our book, must meet chal-
lenges of a greater order than do the other three categories. The mathematical
complexities are more demanding, since placing well-defined probability distri-
butions on potentially infinite-dimensional spaces is inherently harder than for
Euclidean spaces. Added to this is the challenge of “understanding the prior”; the
ill-defined transformation from so-called “prior knowledge” to “prior distribution”
is hard enough to elicit in lower dimensions and of course becomes even more chal-
lenging in bigger spaces. Furthermore, the resulting algorithms, for example for
simulating unknown curves or surfaces from complicated posterior distributions,
tend to be more difficult to set up and to test properly.

Finally, in this short list of important subtopics, we must note that the bigger
world of nonparametric Bayes holds more surprises and occasionally exhibits more
disturbing features than one encounters in the smaller and more comfortable world
of parametric Bayes. It is a truth universally acknowledged that a statistician in
possession of an infinity of data points must be in want of the truth — but some
nonparametric Bayes constructions actually lead to inconsistent estimation proce-
dures, where the truth is not properly uncovered when the data collection grows.
Also, the Bernshtein—von Mises theorems alluded to above, which hold very gen-
erally for parametric Bayes problems, tend not to hold as easily and broadly in the
infinite-dimensional cases. There are, for example, important problems where the
nonparametric Bayes methods obey consistency (the posterior distribution properly
accumulates its mass around the true model, with increased sample size), but with
a different rate of convergence than that of the natural frequentist method for the
same problem. Thus separate classes of situations typically need separate scrutiny,
as opposed to theories and theorems that apply very grandly.

It seems clear to us that the potential list of good, worthwhile nonparametric
Bayes procedures must be rather longer than the already enormously long lists of
Bayes methods for parametric models, simply because bigger spaces contain more
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than smaller ones. A book on Bayesian nonparametrics must therefore limit itself
to only some of these worthwhile procedures. A similar comment applies to the
study of these methods, in terms of performance, comparisons with results from
other approaches, and so forth (making the distinction between the construction of
a method and the study of its performance characteristics).

Who needs it?

Most modern statisticians have become well acquainted with various nonparametric
and semiparametric tools, on the one hand (nonparametric regression, smoothing
methods, classification and pattern recognition, proportional hazards regression,
copulae models, etc.), and with the most important simulation tools, on the other
(rejection—acceptance methods, MCMC strategies like the Gibbs sampler and the
Metropolis algorithm, etc.), particularly in the realm of Bayesian applications,
where the task of drawing simulated realizations from the posterior distribution is the
main operational job. The combination of these methods is becoming increasingly
popular and important (in a growing number of ways), and each such combination
may be said to carry the stamp of Bayesian nonparametrics.

One reason why combining nonparametrics with Bayesian posterior simulations
is becoming more important is related to practical feasibility, in terms of software
packages and implementation of algorithms. The other reason is that such solutions
contribute to the solving of actual problems, in a steadily increasing range of appli-
cations, as indicated in this book and as seen at workshops and conferences dealing
with Bayesian nonparametrics. The steady influx of good real-world application
areas contributes both to the sharpening of tools and to the sociological fact that,
not only hard-core and classically oriented statisticians, but also various schools of
other researchers in quantitative disciplines, lend their hands to work in variations
of nonparametric Bayes methods. Bayesian nonparametrics is used by researchers
working in finance, geosciences, botanics, biology, epidemiology, forestry, paleon-
tology, computer science, machine learning, recommender systems, to name only
some examples.

By prefacing various methods and statements with the word “Bayesian” we are
already acknowledging that there are different schools of thought in statistics —
Bayesians place prior distributions over their parameter spaces while parameters
are fixed unknowns for the frequentists. We should also realize that there are dif-
ferent trends of thought regarding how statistical methods are actually used (as
partly opposed to how they are constructed). In an engaging discussion paper,
Breiman (2001) argues that contemporary statistics lives with a Snowean “two cul-
tures” problem. In some applications the careful study and interpretation of finer
aspects of the model matter and are of primary concern, as in various substantive
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sciences — an ecologist or a climate researcher may place great emphasis on de-
termining that a certain statistical coefficient parameter is positive, for example,
as this might be tied to a scientifically relevant finding that a certain background
factor really influences a phenomenon under study. In other applications such finer
distinctions are largely irrelevant, as the primary goals of the methods are to make
efficient predictions and classifications of a sufficient quality. This pragmatic goal,
of making good enough “black boxes” without specific regard to the components
of the box in question, is valid in many situations — one might be satisfied with
a model that predicts climate parameters and the number of lynx in the forest,
without always needing or aiming to understand the finer mechanisms involved in
these phenomena.

This continuing debate is destined to play arole also for Bayesian nonparametrics,
and the right answer to what is more appropriate, and to what is more important, will
be largely context dependent. A statistician applying Bayesian nonparametrics may
use one type of model for uncovering effects and another for making predictions or
classifications, even when dealing with the same data. Using different models for
different purposes, even with the very same data set, is not a contradiction in terms,
and relates to different loss functions and to themes of interest-driven inference;
cf. various focused information criteria for model selection (see Claeskens and
Hjort, 2008, Chapter 6).

It is also empirically true that some statistics problems are easier to attack using
Bayesian methods, with machineries available that make analysis and inference
possible, in the partial absence of frequentist methods. This picture may of course
shift with time, as better and more refined frequentist methods may be developed
also, for example for complex hierarchical models, but the observation reminds
us that there is a necessary element of pragmatism in modern statistics work;
one uses what one has, rather than spending three extra months on developing
alternative methods. An eclectic view of Bayesian methods, prevalent also among
those statisticians hesitant to accept all of the underlying philosophy, is to use
them nevertheless, as they are practical and have good performance. Indeed a broad
research direction is concerned with reaching performance-related results about
classes of nonparametric Bayesian methods, as partly distinct from the construction
of the models and methods themselves (cf. Chapter 2 and its references). For some
areas in statistics, then, including some surveyed in this book, there is an “advantage
Bayes” situation. A useful reminder in this regard is the view expressed by Art
Dempster: “a person cannot be Bayesian or frequentist; rather, a particular analysis
can be Bayesian or frequentist” (see Wasserman, 2008). Another and perhaps
humbling reminder is Good’s (1959) lower bound for the number of different
Bayesians (46 656, actually), a bound that may need to be revised upwards when
the discussion concerns nonparametric Bayesians.
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Why now?

Themes of Bayesian nonparametrics have engaged statisticians for about forty
years, but now, that is around 2010, the time is ripe for further rich developments
and applications of the field. This is due to a confluence of several different factors:
the availability and convenience of computer programs and accessible software
packages, downloaded to the laptops of modern scientists, along with methodology
and machinery for finessing and finetuning these algorithms for new applications;
the increasing accessibility of statistical models and associated methodological tools
for taking on new problems (leading also to the development of further methods
and algorithms); various developing application areas paralleling statistics that find
use for these methods and sometimes develop them further; and the broadening
meeting points for the two flowing rivers of nonparametrics (as such) and Bayesian
methods (as such).

Evidence of the growing importance of Bayesian nonparametrics can also be
traced in the archives of conferences and workshops devoted to such themes. In
addition to having been on board in broader conferences over several decades,
an identifiable subsequence of workshops and conferences set up for Bayesian
nonparametrics per se has developed as follows, with a rapidly growing number of
participants: Belgirate, Italy (1997), Reading, UK (1999), Ann Arbor, USA (2001),
Rome, Italy (2004), Jeju, Korea (2006), Cambridge, UK (2007), Turin, Italy (2009).
Monitoring the programs of these conferences one learns that development has been
and remains steady, regarding both principles and practice.

Two more long-standing series of workshops are of interest to researchers and
learners of nonparametric Bayesian statistics. The BISP series (Bayesian inference
for stochastic processes) is focused on nonparametric Bayesian models related to
stochastic processes. Its sequence up to the time of writing reads Madrid (1998),
Varenna (2001), La Mange (2003), Varenna (2005), Valencia (2007), Brixen (2009),
alternating between Spain and Italy. Another related research community is defined
by the series of research meetings on objective Bayes methodology. The coordinates
of the O’Bayes conference series history are Purdue, USA (1996), Valencia, Spain
(1998), Ixtapa, Mexico (2000), Granada, Spain (2002), Aussois, France (2003),
Branson, USA (2005), Rome, Italy (2007), Philadelphia, USA (2009).

The aims, purposes and contents of this book

This book has in a sense grown out of a certain event. It reflects this particular origin,
but is very much meant to stand solidly and independently on its constructed feet,
as a broad text on modern Bayesian nonparametrics and its theory and methods; in
other words, readers do not need to know about or take into account the event that
led to the book being written.
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A background event

The event in question was a four-week program on Bayesian nonparametrics hosted
by the Isaac Newton Institute of Mathematical Sciences at Cambridge, UK, in Au-
gust 2007, and organized by the four volume editors. In addition to involving a core
group of some twenty researchers from various countries, the program organized a
one-week international conference with about a hundred participants. These repre-
sented an interesting modern spectrum of researchers whose work in different ways
is related to Bayesian nonparametrics: those engaged in methodological statistics
work, from university departments and elsewhere; statisticians involved in collab-
orations with researchers from substantive areas (like medicine and biostatistics,
quantitative biology, mathematical geology, information sciences, paleontology);
mathematicians; machine learning researchers; and computer scientists.

For the workshop, the organizers selected four experts to provide tutorial lectures
representing four broad, identifiable themes pertaining to Bayesian nonparametrics.
These were not merely four themes “of interest,” but were closely associated with
the core models, the core methods, and the core application areas of nonparametric
Bayes. These tutorials were

e Dirichlet processes, related priors and posterior asymptotics (by S. Ghosal),
e models beyond the Dirichlet process (by A. Lijoi),

e applications to biostatistics (by D. B. Dunson),

e applications to machine learning (by Y. W. Teh).

The program and the workshop were evaluated (by the participants and other parties)
as having been very successful, by having bound together different strands of work
and by perhaps opening doors to promising future research. The experience made
clear that nonparametric Bayes is an important growth area, but with side-streams
that may risk evolving too much in isolation if they do not make connections with
the core field. All of these considerations led to the idea of creating the present
book.

What does this book do?

This book is structured around the four core themes represented by the tutorials
described above, here appearing in the form of invited chapters. These core chap-
ters are then complemented by chapters written by the four volume editors. The
role of these complementary chapters is partly to discuss and extend the four core
chapters, in suitably matched pairs. These complements also offer further devel-
opments and provide links to related areas. This editorial process hence led to the
following list of chapters, where the pairs 1-2, 3-4, 5-6, 7-8 can be regarded as
units.
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1 S. G. Walker: Bayesian nonparametric methods: motivation and ideas

2 S. Ghosal: The Dirichlet process, related priors and posterior asymptotics

3 A. Lijoi and . Priinster: Models beyond the Dirichlet process

4 N. L. Hjort: Further models and applications.

5 Y. W. Teh and M. 1. Jordan: Hierarchical Bayesian nonparametric models
with applications

6 J. Griffin and C. Holmes: Computational issues arising in Bayesian non-
parametric hierarchical models

7 D. B. Dunson: Nonparametric Bayes applications to biostatistics

8 P. Miiller and F. Quintana: More nonparametric Bayesian models for
biostatistics

As explained at the end of the previous section, it would not be possible to have
“everything important” inside a single book, in view of the size of the expanding
topic. It is our hope and view, however, that the dimensions we have probed are
sound, deep and relevant ones, and that different strands of readers will benefit from
working their way through some or all of these.

The first core theme (Chapters 1 and 2) is partly concerned with some of the
cornerstone classes of nonparametric priors, including the Dirichlet process and
some of its relatives. General principles and ideas are introduced (in the setting of
i.i.d. observations) in Chapter 1. Mathematical properties are further investigated,
including characterizations of the posterior distribution, in Chapter 2. The theme
also encompasses properties of the behavior of the implied posterior distributions,
and, specifically, consistency and rates of convergence. Bayesian methodology is
often presented as essentially a machinery for coming from the prior to the posterior
distributions, but is at its most powerful when coupled with decision theory and
loss functions. This is true in nonparametric situations as well, as also discussed
inside this first theme.

The second main theme (Chapters 3 and 4) is mainly occupied with the devel-
opment of the more useful nonparametric classes of priors beyond those related
to the Dirichlet processes mentioned above. Chapter 3 treats completely random
measures, neutral-to-the-right processes, the beta process, partition functions, clus-
tering processes, and models for density estimation, with Chapter 4 providing
further methodology for stationary time series with nonparametrically modeled co-
variance functions, models for random shapes, etc., along with pointers to various
application areas, such as survival and event history analysis.

The third and fourth core themes are more application driven than the first two.
The third core theme (Chapters 5 and 6) represents the important and growing area
of both theory and applications of Bayesian nonparametric hierarchical modeling
(an area related to what is often referred to as machine learning). Hierarchical



