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1 Introduction

1.1 Statistics and quality assurance, control and assessment

The appraisal of quality has a considerable impact on analytical laboratories.
Laboratories have to manage the quality of their services and to convince clients
that the advocated level of quality is attained and maintained. Increasingly accredit-
ation is demanded or used as evidence of reliability. At present there are American
and European standards (ISO 25 and EN45001) that describe how a laboratory
ought to be organized in order to manage the quality of its results. These standards
form the basis for accreditation of analytical labs. Terms used frequently are quality
assurance and quality control. Quality assurance is a wider term which includes both
quality control and quality assessment.

Quality control of analytical data (QCAD) was defined by the ISO Committee
as: ‘“The set of procedures undertaken by the laboratory for continuous monitoring
of operations and results in order to decide whether the results are reliable enough
to be released’. QCAD primarily monitors the batch-wise accuracy of results on
quality control materials, and precision on independent replicate analysis of ‘test
materials’. Quality assessment was defined (Taylor 1987) as ‘those procedures and
activities utilized to verify that the quality control system is operating within ac-
ceptable limits and to evaluate the data’.

The standards of quality assurance (American ISO 25; European EN 45001) were
written for laboratories that do analyses of a routine nature and give criteria for the
implementation of a quality system which ensures an output with performance
characteristics stated by the laboratory. An important aspect of the quality assurance
system is the full documentation of the whole analysis process. It is essential to have
well designed and clear worksheets. On the worksheets both the raw data and the
calculated results of the analyses should be written. Proper worksheets reduce the
chances of computing error and enable reconstruction of the test if it appears that a
problem has occurred. The quality assurance system (or Standard) also treats the
problems of personnel, equipment, materials and chemicals. The most important
item is the methodology of the analysis. Quality control is not meaningful unless
the methodology used has been validated properly. Validation of a methodology
means the proof of suitability of this methodology to provide useful analytical data.
A method is validated when the performance characteristics of the method are
adequate and when it has been established that the measurement is under statistical
control and produces accurate results.

‘Statistical control’ is defined as ‘A phenomenon will be said to be “statistically
controlled” when, through the use of past experience, we can predict, at least
within limits, how the phenomenon may be expected to vary in the future.
Here it is understood that prediction means that we can state at least
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approximately, the probability that the observed phenomenon will fall within the
given limits.’

The quality assurance systems required for accreditation of analytical laborator-
ies are very important and are dealt with in several recent books (Kateman &
Buydens 1987; Guennzler 1994; Funk ez al. 1995; Pritchard 1997). However, these
systems are well beyond the scope of this book, which will be devoted mainly to
quality assessment of analytical data.

The quality of chemical analysis is usually evaluated on the basis of its uncer-
tainty compared to the requirements of the users of the analysis. If the analytical
results are consistent and have small uncertainty compared to the requirements, e.g.
minimum or maximum concentration of special elements in the sample and its
tolerances, the analytical data are considered to be of adequate quality. When the
results are excessively variable or the uncertainty is larger than the needs,
the analytical results are of low or inadequate quality. Thus, the evaluation of the
quality of analysis results is a relative determination. What is high quality for one
sample could be unacceptable for another. A quantitative measurement is always an
estimate of the real value of the measure and involves some level of uncertainty. The
limits of the uncertainty must be known within a stated probability, otherwise no
use can be made of the measurement. Measurement must be done in such a way that
could provide this statistical predictability.

Statistics is an integral part of quality assessment of analytical results, e.g. to
calculate the precision of the measurements and to find if two sets of measurements
are equivalent or not (in other words if two different methods give the same result
for one sample).

Precise and accurate, which are synonyms in everyday language, have distinctly
different meaning in analytical chemistry methodology. There are precise methods,
which means that repeated experiments give very close results which are inaccurate
since the measured value is not equal to the true value, due to systematic error in
the system. For example, the deuterium content of a H,O/D,O mixture used to be
determined by the addition of LiAlH4, which reduces the water to hydrogen gas.
The gas is transferred and measured by a mass spectrometer. However, it was
found that although the method is precise, it is inaccurate since there is an isotope
effect in the formation of the hydrogen.

Figure 1.1 explains simply the difference between precision and accuracy. Statis-
tics deals mainly with precision, while accuracy can be studied by comparison with
known standards. In this case, statistics play a role in analyzing whether the results
are the same or not.

Old books dealt with only statistical methods. However the trend in the last
decade is to include other mathematical methods that are used in analytical chemis-
try. Many analytical chemists are using computer programs to compute analytically
areas of the various peaks in a spectrum or a chromatogram (in a spectrum the
intensity of the signal is plotted vs. the wavelength or the mass [in mass spectra],
while in the chromatogram it is plotted as a function of the time of the separation
process). Another example is the use of the Fourier Transform either in ‘Fourier
Transform Spectroscopy’ (mainly FTIR and FT-NMR, but recently also other
spectroscopies) or in smoothing of experimental curves. The combination of statistics
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Accurate, and precise Precise, not accurate

o -

Accurate, not precise Neither accurate, nor
precise
[
[ ] ° °
[ ] ®

Fig. 1.1 TIllustration of the meaning of accuracy and precision.

and other mathematical methods in chemistry is often referred to as chemometrics.
However due to the large part played by statistics, and since many are ‘afraid’ of
the general term of chemometrics, we prefer the title of Statistical and Mathemat-
ical Methods. These methods can be used as a black box, but it is important for
educated analysts to understand the basic theory in order to take advantages of the
full possibilities of these techniques and to choose intelligently the parameters as
well as recognizing the limitation of these methods. It is clear that the choice of the
mathematical tools is subjective, hence some methods are not included in this book
because the authors feel that they are less important. Including the other methods
would make this book too large.

1.2 References

Funk, W., Damman, V. & Donnevert, G. 1995, Quality Assurance in Analytical Chemistry, VCH,
Weinheim.

Guennzler, H. 1994, Accreditation and Quality Assurance in Analytical Chemistry, Springer, Berlin.

Kateman, G. & Buydens, L. 1987, Quality Control in Analytical Chemistry, John Wiley, New York.

Pritchard, E. 1997, Quality in the Analytical Chemistry Lab, John Wiley, Chichester, UK.

Taylor, G. K. 1987, Quality Assurance of Chemical Measurements, John Wiley, Chichester, UK.



2 Statistical measures of experimental data

2.1 Mean and standard deviation

One of the best ways to assess the reliability of the precision of a measurement is to
repeat the measurement several times and examine the different values obtained.
Ideally, all the repeating measurements should give the same value, but in reality
the results deviate from each other. Ideally, for a more precise result many replicate
measurements should be done, however cost and time usually limit the number of
replicate measurements possible. Statistics treats each result of a measurement as an
item or individual and all the measurements as the sample. All possible measure-
ments, including those which were not done, are called the population.

The basic parameters that characterize a population are the mean, ., and the
standard deviation, o. In order to determine the frue p. and o, the entire population
should be measured, which is usually impossible to do. In practice, measurement of
several items is done, which constitutes a sample. Estimates of the mean and the
standard deviation are calculated and denoted by X and s, respectively. The values
of ¥ and s are used to calculate confidence intervals, comparison of precisions
and significance of apparent discrepancies. The mean, X, and the standard devi-

ation, s, of the values x;, x», ..., X, obtained from n measurements is given by the
equations:
X X Lot X
% — 1+ X2+ n (218.)
n
) —=\2 )2
-X =3 e (i =0
. ¢ ((xl Y+ 02 =%"+...+ (=) ) 220)
n—1
These equation can be written in a shorter way using the % notation:
n
Sx
% == (2.1b)
n
n 2 n n n 2
Y. (i —%) > 2 X <in)
i=1 _ i=1 X =l \i=l (2.2b)
' n—1 n—1 n—1 n—1 nn-1) ’

In some older books the use of the term ‘average’ instead of ‘mean’ (Youden
1994), can be found, but the common term nowadays is ‘mean’. There are different
kinds of ‘means’ (Woan 2000) (e.g. arithmetic mean, harmonic mean), but if not

4
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explicitly written the ‘mean’ is meant to be the arithmetic mean as defined by
Equation (2.1).

There are several reasons why the arithmetic mean and not the other ones is
chosen. The main reason is because it is the simplest one:

’ . _ 1
Arithmetic mean: X, = —(x; + X2+ ...+ Xp)
n
. _ 1
Geometric mean: X, = (X1 X X2 X X3 X ... X X,) o

. _ 11 1\
Harmonic mean: X,=n{—+—+...+—
X1 X2 Xn
Another reason to choose the arithmetic mean is that it fulfils the least squares
criterion (Cantrell 2000), i.e. X, fulfils the requirement:

n
Z (xj — X.)? = minimum
=1

The names of these means come from the corresponding sequences. If we have an
odd number of consecutive terms of a geometric sequence, then the middle term is
given by the geometric mean of all these terms. The same is true for the arithmetic
mean (in the case of an arithmetic sequence) and for the harmonic mean (in the
case of an harmonic sequence). From now on we will use only the arithmetic mean
and will refer to it in the general form:

X1 +xX24+ ...+ X,

X=X, = : @2.1¢)

The mean of the sum of squares of the deviation of the observed data from the
mean is called the variance:

G B G e R B

v
n—1

(2.3)

The division by (n — 1) and not by n is done because we do not know the true value
of X, i.e. w, and instead we used the calculated value of X. For the calculation of X,
we use one degree of freedom (one unit of information), and this is the reason that
we divide by (n— 1) (the number of degrees of freedom, i.e. the number of free
units of information which were left).

The dimension of the variance, V, is the square of the dimension of our observation
and in order to get the same dimension we take the square root of ¥, which is called the

standard deviation, s. In many cases the variance is not denoted by ¥, but is written as 52.

. \/((xl — P+ =T 4 (i — Y)2> _ \/(nle2 — (2x,~)2> (2.20)
n—1 n(n—1)

The values of X and s can be calculated using a computer program or a calcula-
tor. It is important to note that all scientific calculators have two keys, one depicted
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as o, and the other one as o,,_;. Equation (2.2) fits the key o,,_;. The other key uses
n instead of (n — 1) in Equation (2.2). The key o, gives the standard deviation of
our sample, but not of the whole population, which can be obtained by doing an
infinite number of repeated measurements. In other words, o, is the standard devi-
ation if the true mean p is known. Otherwise, one degree of freedom is lost on the
calculation of X. For a small number of repetitions, the equation with (n — 1) gives
a better estimate of the true o, which is unknown. The mean X is a better estimate
for the true value than one measurement alone. The standard deviation o (or its
estimate s) represents the dispersion of the measured values around the mean. The
standard deviation has the same dimension as that of the measured values, x;.
Often, analysts prefer to use a dimensionless quantity to describe the dispersion of
the results. In this case they use the relative standard deviation as a ratio (SV) (also
called the coefficient of variation, CV) or as a percentage (RSD):

SV = s/% (2.4)

RSD = CV x 100 (2.5)

When calculating small absolute standard deviations using a calculator, some-
times considerable errors are caused by rounding, due the limited number of digits
used. In order to overcome this problem, and in order to simplify the punching on
the calculator, it is worth subtracting a constant number from all the data points,
so that x; will be not large numbers but rather of the same magnitude as their
differences. The standard deviation will be unchanged but the subtracted constant

should be added to the mean. In other words, if we have n data points, xi, ..., X,
which are large numbers, it is better to key into the calculator (x; — ¢),
(xa —¢), ...,(xy — ¢) such that (x; — ¢) are no longer large numbers. The real mean

of x; is X;=c+ (X;—¢) and the standard deviation remains the same,
s(x;) = s(x; — ¢). Thus for calculating the mean and standard deviation of 50.81,
50.85, 50.92, 50.96, 50.83, we can subtract the constant 50.8, key 0.01, 0.05, 0.12,
0.16, 0.03 and obtain X = 0.074 and s = 0.06348. The real mean is 50.8 + 0.074
= 50.874 and s remains the same i.e. 0.06348. We could subtract only 50, key 0.81,
0.85, 0.92, 0.96, 0.83 and will obtain X = 0.874 and s = 0.06348. The real mean is
50 + 0.874 = 50.874 and s is 0.06348 as before.

Usually we choose the constant ¢ as the smallest integer number of our data,
so that the smallest number of (x; —¢) is less than one. For example, if the
data points are 92.45, 93.16, 91.82, 95.43, 94.37, we subtract 91 from all the data
points, and calculate the mean and standard deviation of 1.45, 2.16, 0.82, 4.43,
3.37. The calculator will give X = 2.446 and s = 1.4584. Adding 91 to the obtained
mean, we get X = 93.446 and s = 1.4584. Some will find it more easy to subtract
Just 90.

2.1.1 Significant figures

At this stage it is important to emphasize the importance of significant figures,
especially nowadays when all calculations are made with calculators or computers,
which yield results with many digits. Since our original data were given with two
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digits after the decimal point, any additional digits are meaningless. Consequently
in the previous example there is no point giving X = 93.446; we should round it off
to X =93.45 and similarly s = 1.46. Usually the number of significant figures
does not refer to the number of decimal digits but to the total number of figures.
Thus, for example, the number 92.45 has four significant figures. This means
that our precision of the measurement is 10~*. In this case a result should not be
given as 25.3 but rather as 25.30, in order to emphasize the precision of the meas-
urement. The mean of values should have the same number of significant figures as
the values themselves. However, the standard deviation, which is usually smaller,
should have the same number of decimal digits as the measurements themselves,
rather than the same number of significant figures. Thus, in our example we use for
s only three significant figures i.e. s = 1.46, since the important factor is the decimal
digits.

2.1.2  Frequency tables

When large numbers of measurements are made (on the same aliquot if it is
not consumed by the measurement, or on different aliquots of the same sample
or on different samples), some values are obtained more than once. Some-
times, instead of discrete values, a range of values is chosen as one value. In
both cases it is simpler to concentrate the data in a frequency table — a table
that gives the number of times (named frequency) each value was obtained.
For example, the concentration of salt in drinking water was measured each day
for a whole year. The results are given in Table 2.1 (given to two significant
figures).

In this case the mean and the standard deviation are calculated by the equations:

n
Jixi
;flxl JVf2X2‘|'~--‘|'fnxn Z

X = = x== (2.6)

fit+ft+ .+ XH:fi
i=1

Table 2.1 Concentration of salt in drinking water measured each day for one year.

Concentration (mg/¢) x; Numbers of days f;
3.5 18
3.6 22
37 25
3.8 35
39 46
4.0 55
4.1 45
42 40
43 32
4.4 27

4.5 20
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Nl — Y
\/(ﬁm_f)z+f2(x2—f>2+...+ﬁ1(xrx)2> [ HeD
T —1 = S= 1 Ta N
fi+th+...+f (_Zlfz)—l
Q.7

The summation is carried out over all the various values of x; (n different values)
and the total number of measurements is:

fith+ . th=>_f 2.8)
i=1

Most scientific calculators can calculate the mean value and the standard
deviation from frequency tables. In our example the following results will be
obtained:

x=4.0, s=03

(remember to use the n—1I key). The units of both X and s are the same as each
sample, i.e. mg/f. In short the concentration of the salt is written as 4.0 + 0.3 mg/.

2.2 Graphical distributions of the data — bar charts or histograms

The standard deviation gives a measure of the spread of the results around the
mean value. However, it does not indicate the shape of the spread.

Frequency tables and, even more so, drawing them as a rod diagram or as a
histogram give a clearer picture of the spread of the measurement. A histogram
describes the real situation better than bar charts since the real values are not
discrete values of only two significant digits, and 3.7 mg/¢ stands, for example, for
the range 3.65001 to 3.750 00. If the table were to three rather than two significant
digits, there would be many more columns in the histogram. Increasing the number
of measurements and the number of significant figures will lead to a continuous
distribution.

Most spreadsheet data programs, such as Lotus 1-2-3, Quattro Pro, Excel or
Origin can draw the frequency table in the form of column charts or histograms.
Figures 2.1 and 2.2 are, for example, the result of the use of the chart wizard of
Excel on the data of Table 2.1.

2.3 Propagation of errors (uncertainties)

In some cases we are interested in a value of a variable, which cannot be deter-
mined directly but can be calculated from several measurements of different proper-
ties. Thus for the measurement of the area of a rectangle we need to measure both
its length L and the width W. The area 4, is given by:

A=Lx W

For the volume of a box, V, we need in addition to measure its height, H:
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Number of days

4

35 36 37 38 39 40 41 42 43 44 45
Concentration (mg/£ )
Fig. 2.1 Rod chart.

A

Number of days

-
.

35 36 37 38 39 40 41 42 43 44 45
Concentration (mg/£ )

Fig. 2.2 Histogram.

V=LxWxH

How do the uncertainties (possible errors) in the estimation of L and W affect the
resulting uncertainty in the value of the area, 4? One way to calculate the possible
error in A is to take the highest values of L and W, calculate from them the obtained
A and compare it with the average value and the minimal values. Thus:

L-AL, W—AW = A—AAd=(L—-AL) x (W —AW)
=LW—(LxAW+W x AL) + AW x AL
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If we assume that the last term (AW x AL) can be neglected, due to the fact that
the product of two small terms will lead to a smaller term, we can see that both
directions will lead to the same value of AA4:

AA=LxAW + W x AL (2.9)
The same equation will be obtained by calculus:
dA:;d€+§% dW = dA=WwW dd+(dW (2.10)

In the general case, where y was measured from the separate quantities x, z, etc.,
we can write:

y=f(x, z,...) (2.11)
The mean of y is calculated from the mean values of the different quantities:
y=f% 2 ...) (2.12)

The different values of y can be written as:

) )
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and the variance oy I8

= lim lZ(y,- -7 (2.14)

The variance, 02 can be expressed in terms of the variance of the separate meas-
ured quantities 02 o2, etc:
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The first two sums are o> and o2 respectively:
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o} = lim NZ(x, %) o = lim NZ(Z, z) (2.15)

oy, = lim iZ(xi —%)(zi — 2) (2.16)



