Methods in ENZYMOLOGY

Volume 447

RNA Turnover in Bacteria, Archaea and Organelles

Edited by
Lynne E. Maquat
Cecilia M. Arraiano

Q\$5 M\$92 V. 447

VOLUME FOUR HUNDRED AND FORTY-SEVEN

METHODS IN ENZYMOLOGY

RNA Turnover in Bacteria, Archaea and Organelles

EDITED BY

LYNNE E. MAQUAT

Department ot Biochemistry and Biophysics University of Rochester School of Medicine and Dentistry Rochester, NY, USA

CECILIA M. ARRAIANO

ITQB-Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa Oeiras, Portugal

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

Copyright © 2008, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2008 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0076-6879/2008 \$35.00

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

For information on all Elsevier Academic Press publications visit our Web site at elsevier direct.com

ISBN-13: 978-0-12-374377-0

PRINTED IN THE UNITED STATES OF AMERICA 08 09 10 11 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

METHODS IN ENZYMOLOGY

RNA Turnover in Bacteria, Archaea and Organelles

METHODS IN ENZYMOLOGY

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California, USA

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

CONTRIBUTORS

Hiroji Aiba

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan

Soraya Aït-Bara

Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, Toulouse, France

Mónica Amblar

Unidad de Investigación Biomédica, Instituto de Salud Carlos III (Campus de Majadahonda), Madrid, Spain

Cecília Maria Arraiano

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

Ana Barbas

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

David H. Bechhofer

Mount Sinai School of Medicine of New York University, Department of Pharmacology and Systems Therapeutics, New York, USA

Joel G. Belasco

Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, USA

Lionel Bénard

CNRS UPR 9073 (affiliated with Université de Paris 7; Denis Diderot), Institut de Biologie Physico-Chimique, Paris, France

Jonathan A. Bernstein

Department of Pediatrics, Stanford University, Stanford, CA 94305, USA

Sandrine Boisset

INSERM U851, Centre National de Référence des Staphylocoques, Université de Lyon I, Lyon, France

xvi Contributors

Douglas J. Briant

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

Agamemnon J. Carpousis

Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS) and Université Paul Sabatier, Toulouse, France

Helena Celesnik

Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, USA

Clément Chevalier

Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France

Mikkel Christensen-Dalsgaard

Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle, United Kingdom

Ciarán Condon

CNRS UPR 9073 (affiliated with Université de Paris 7; Denis Diderot), Institut de Biologie Physico-Chimique, Paris, France

Elena Conti

Max-Planck Institute of Biochemistry, Martinsried, Germany

Glen A. Coburn

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

Atilio Deana

Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, USA

Hili Giladi

Department of Genetics, University of Georgia, Athens, Georgia, USA

Gianni Dehò

Dipartimento di Scienze biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy

Gintaras Deikus

Mount Sinai School of Medicine of New York University, Department of Pharmacology and Systems Therapeutics, New York, USA

Murray P. Deutscher

Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida, USA

André Dietrich

Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, France

Marc Dreyfus

École Normale Supérieure, Laboratoire de Génétique Moléculaire, Paris, France, and Centre National de la Recherche Scientifique (CNRS), Paris, France

Daniel Karzai Dulebohn

Department of Biochemistry and Cell Biology and Center for Infectious Diseases of Stony Brook University, Stony Brook, New York, USA

Elena Evguenieva-Hackenberg

Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Giessen, Germany

Pierre Fechter

Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France

Dominique Gagliardi

Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, France

Thomas Geissmann

Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France

Zhiyun Ge

Department of Biochemistry and Cell Biology and Center for Infectious Diseases of Stony Brook University, Stony Brook, New York, USA

Kenn Gerdes

Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle, United Kingdom

Pawel Golik

Department of Genetics and Biotechnology, Warsaw University, Warsaw, Poland, and Institute of Biochemistry and Biophysics PAS, Warsaw, Poland

Eliane Hajnsdorf

CNRS UPR9073; Institut de Biologie Physico-Chimique; Université Paris Diderot, Paris7, Paris7, France

Janet S. Hankins

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

xviii Contributors

Narumi Hino-Shigi

Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan

Sarah Holec

Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, France

Eric Huntzinger

Max Planck Institute for Developmental Biology, Tübingen, Germany

Robert Jedrzejczak

Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Puchta Laboratory, Argonne, Illinois, USA

Stefanie S. Jourdan

Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom

A. Wali Karzai

Department of Biochemistry and Cell Biology and Center for Infectious Diseases of Stony Brook University, Stony Brook, New York, USA

Vanessa Khemici

Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS) and Université Paul Sabatier, Toulouse, France

Louise Kime

Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom

Gabriele Klug

Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Giessen, Germany

Sidney R. Kushner

Department of Genetics, University of Georgia, Athens, Georgia, USA

Heike Lange

Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, France

Pei-Hsun Lin

Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan

Sue Lin-Chao

Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan

Zhongwei Li

Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA

Esben Lorentzen

Birkbeck College London, Institute of Structural Molecular Biology, London, United Kingdom

George A. Mackie

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

Kimika Maki

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan

Michal Malecki

Department of Genetics and Biotechnology, Warsaw University, Warsaw, Poland

Valerie F. Maples

Department of Genetics, University of Georgia, Athens, Georgia, USA

Nathalie Mathy

CNRS, Institut de Biologie Physico-Chimique, Paris, France

Pierluigi Mauri

Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate (Milan), Italy

Kenneth J. McDowall

Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom

Wenzhao Meng

Departments of Chemistry, Temple University, Philadelphia, Pennsylvania, USA

Xin Miao

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

Bijoy K. Mohanty

Department of Genetics, University of Georgia, Athens, Georgia, USA

Teppei Morita

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan

Asuteka Nagao

Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan

XX Contributors

Lilian Nathania

Departments of Chemistry, Temple University, Philadelphia, Pennsylvania, USA

Rhonda H. Nicholson

Departments of Biology, Temple University, Philadelphia, Pennsylvania, USA

Allen W. Nicholson

Departments of Biology and Chemistry, Temple University, Philadelphia, Pennsylvania, USA

Irina A. Oussenko

Mount Sinai School of Medicine of New York University, Department of Pharmacology and Systems Therapeutics, New York, USA

Martin Overgaard

Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark

Olivier Pellegrini

CNRS UPR 9073 (affiliated with Université de Paris 7; Denis Diderot), Institut de Biologie Physico-Chimique, Paris, France

Alexandre V. Pertzev

Departments of Chemistry, Temple University, Philadelphia, Pennsylvania, USA

Leonora Poljak

Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS) and Université Paul Sabatier, Toulouse, France

Victoria Portnoy

Department of Biology Technion, Israel Institute of Technology, Haifa, Israel

Florence Proux

École Normale Supérieure, Laboratoire de Génétique Moléculaire, Paris, France, and Centre National de la Recherche Scientifigure (CNRS), Paris, France

Annie Prud'homme-Genereux

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

Olga Puchta

Department of Genetics and Biotechnology, Warsaw University, Warsaw, Poland, and Institute of Biochemistry and Biophysics PAS, Warsaw, Poland

Yulia Redko

CNRS UPR 9073 (affiliated with Université de Paris 7; Denis Diderot), Institut de Biologie Physico-Chimique, Paris, France

Philippe Régnier

CNRS UPR9073; Institut de Biologie Physico-Chimique; Université Paris Diderot, Paris7, Paris, France

Jamie Richards

Department of Biochemistry and Cell Biology and Center for Infectious Diseases of Stony Brook University, Stony Brook, New York, USA

Pascale Romby

Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France

Gadi Schuster

Department of Biology Technion, Israel Institute of Technology, Haifa, Israel

Dharam Singh

Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan

Shimyn Slomovic

Department of Biology Technion, Israel Institute of Technology, Haifa, Israel

Piotr P. Stepien

Department of Genetics and Biotechnology, Warsaw University, Warsaw, Poland, and Institute of Biochemistry and Biophysics PAS, Warsaw, Poland

Leigh M. Stickney

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

Thomas Sundermeier

Department of Biochemistry and Cell Biology and Center for Infectious Diseases of Stony Brook University, Stony Brook, New York, USA

Tsutomu Suzuki

Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan

François Vandenesch

INSERM U851, Centre National de Référence des Staphylocoques, Université de Lyon I, Lyon, France

Steffen Wagner

Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Giessen, Germany

Kristoffer Skovbo Winther

Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom

xxii Contributors

Mieko Yagi

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan

Shiyi Yao

Mount Sinai School of Medicine of New York University, Department of Pharmacology and Systems Therapeutics, New York, USA

PREFACE

The cellular cleavage of RNA has remarkably diverse biologic consequences. With growing recognition that RNA turnover has a profound impact on gene expression and that rates of RNA decay can be modulated in response to environmental and developmental signals, significant progress has been made toward explaining cleavage mechanisms and how such mechanisms are regulated.

In view of research developments over the past 20 years, it is surprising that a *Methods in Enzymology* on RNA turnover is not a well-worn tome on our bookshelves. To fill the void, this volume, which addresses RNA turnover in bacteria, archaea, and organelles, and two companion volumes (Volumes 448 and 449), which focus on RNA turnover in eukaryotes, are hoped to serve both as useful references for specialists in the field and as a helpful guides for the broader community of research scientists wishing to initiate studies of RNA decay. Fundamental principles govern RNA decay and how to study it. By incorporating this information for a diverse array of organisms, we hope to stimulate the cross-fertilization of concepts and techniques.

A wide range of methods and reagents are presented, often in the context of answering important biologic questions. The authors have offered detailed rationalizations for and descriptions of their work, endeavoring to ensure that important technical points are made clearly. We wish to express our appreciation to the authors for their thoughtful contributions and willingness to share expertise.

Most chapters provide not only methodologic recipes but also short reviews that place the methods in a proper biologic framework, taking into account the interplay between RNA turnover and other cellular processes. Some degree of overlap between chapters on related topics is unavoidable. This allows each chapter to be read and understood as an independent unit while permitting the expression of diverse viewpoints on alternate methods.

Chapters are written to emphasize the characterization of RNA elements, protein factors, and cellular processes that mediate and/or regulate RNA turnover. RNA elements, including primary sequences and, frequently, higher-order structures, can influence the decay functions of a variety of protein factors such as exoribonucleases, endoribonucleases, helicases, and other types of RNA-binding proteins, all of which often exist in multiprotein complexes. Cellular processes having the potential to affect RNA turnover

include transcription, translation, and polyadenylation. Many experimental approaches for analyzing RNA decay are presented, each generally focusing on a specific organism and a particular class of RNA such as mRNA, a stable RNA, or a type of small noncoding RNA. Techniques presented include isolating total-cell or organelle RNA by different methods, determining RNA half-lives, establishing *in vitro* and *in vivo* RNA degradation assays, mapping full-length RNAs and decay intermediates, and purifying and characterizing ribonucleases and RNA binding proteins. Global approaches are also discussed, such as genomic analyses of RNA decay with DNA microarrays and proteomic analyses of the RNA degradosome with two-dimensional chromatography coupled to tandem mass spectrometry.

The knowledge collected makes clear how far our understanding of RNA degradation has come in the past few years and how much about this important regulatory process remains to be discovered. This volume should be of lasting value in providing techniques and tools for studying RNA turnover mechanisms. Applications of this knowledge to medicine and biotechnology are underway.

It is our hope that this volume will reflect the excitement currently held by RNA turnover specialists and will serve as a source of inspiration for scientists entering this rapidly moving and important field.

Lynne E. Maquat and Cecilia M. Arraiano

METHODS IN ENZYMOLOGY

Volume I. Preparation and Assay of Enzymes

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME II. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME III. Preparation and Assay of Substrates Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME IV. Special Techniques for the Enzymologist Edited by SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

VOLUME V. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VI. Preparation and Assay of Enzymes (Continued) Preparation and Assay of Substrates Special Techniques

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VII. Cumulative Subject Index Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VIII. Complex Carbohydrates

Edited by ELIZABETH F. NEUFELD AND VICTOR GINSBURG

VOLUME IX. Carbohydrate Metabolism *Edited by* WILLIS A. WOOD

VOLUME X. Oxidation and Phosphorylation

Edited by RONALD W. ESTABROOK AND MAYNARD E. PULLMAN

VOLUME XI. Enzyme Structure Edited by C. H. W. Hirs

VOLUME XII. Nucleic Acids (Parts A and B)

Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE

VOLUME XIII. Citric Acid Cycle Edited by J. M. LOWENSTEIN

VOLUME XIV. Lipids

Edited by J. M. LOWENSTEIN

VOLUME XV. Steroids and Terpenoids Edited by RAYMOND B. CLAYTON

VOLUME XVI. Fast Reactions

Edited by Kenneth Kustin

VOLUME XVII. Metabolism of Amino Acids and Amines (Parts A and B)

Edited by Herbert Tabor and Celia White Tabor

VOLUME XVIII. Vitamins and Coenzymes (Parts A, B, and C)

Edited by Donald B. McCormick and Lemuel D. Wright

VOLUME XIX. Proteolytic Enzymes

Edited by Gertrude E. Perlmann and Laszlo Lorand

VOLUME XX. Nucleic Acids and Protein Synthesis (Part C)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXI. Nucleic Acids (Part D)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XXII. Enzyme Purification and Related Techniques

Edited by WILLIAM B. JAKOBY

VOLUME XXIII. Photosynthesis (Part A)

Edited by Anthony San Pietro

VOLUME XXIV. Photosynthesis and Nitrogen Fixation (Part B)

Edited by Anthony San Pietro

VOLUME XXV. Enzyme Structure (Part B)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVI. Enzyme Structure (Part C)

Edited by C. H. W. Hirs and Serge N. Timasheff

VOLUME XXVII. Enzyme Structure (Part D)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVIII. Complex Carbohydrates (Part B)

Edited by Victor Ginsburg

VOLUME XXIX. Nucleic Acids and Protein Synthesis (Part E)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XXX. Nucleic Acids and Protein Synthesis (Part F)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXXI. Biomembranes (Part A)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXII. Biomembranes (Part B)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXIII. Cumulative Subject Index Volumes I-XXX

Edited by Martha G. Dennis and Edward A. Dennis

VOLUME XXXIV. Affinity Techniques (Enzyme Purification: Part B)

Edited by WILLIAM B. JAKOBY AND MEIR WILCHEK