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PREFACE

This volume contains the proceedings of the US-Australia workshop on Control
and Chaos held in Honolulu, Hawaii from 29 June to 1 July, 1995. The workshop was
jointly sponsored by the National Science Foundation (USA) and the Department of
Industry, Science and Technology (Australia) under the US-Australia agreement.

Control and Chaos—it brings back memories of the endless reruns of “Get Smart”
where the good guys worked for Control and the bad guys were associated with Chaos.
In keeping with current events, Control and Chaos are no longer adversaries but are
now working together. In fact, bringing together workers in the two areas was the
focus of the workshop.

The objective of the workshop was to bring together experts in dynamical systems
theory and control theory, and applications workers in both fields, to focus on the
problem of controlling nonlinear and potentially chaotic systems using limited control
effort. This involves finding and using orbits in nonlinear systems which can take a
system from one region of state space to other regions where we wish to stabilize the
system. Control is used to generate useful chaotic trajectories where they do not exist,
and to identify and take advantage of useful ones where they do exist. A controller
must be able to nudge a system into a proper chaotic orbit and know when: to come
off that orbit. Also, it must be able to identify regions of state space where feedback
control will be effective. Several new methods were presented, including targeting
algorithms and the use of Lyapunov functions for identifying controllable-targets. -
There are many direct applications of the methods discussed in this workshop. These
include mechanical and electrical systems which are to be controlled, or ecosystems
and other biosystems that are to be managed.

The participants of the workshop were from the USA or Australia except for
one from England and one from Japan. The participants were more or less balanced
according to their interests in dynamics or control systems.’ Each participant gave
a presentation in his or her field of expertise as related to the overall theme. The
formal papers (contained in this volume) were written after the workshop so that the
authors could take into account the workshop discussions, and relate their work to
the other presentations. Each paper was reviewed by other participants who then
wrote comments which are attached to the ends of the papers. We feel that the
comments form a valuable part of this volume in that they give the reader a share of
the workshop experience.

The papers are grouped, as they were presented, according to three classifications:
Understanding Complex Systems, Controlling Complex Systems, and Applications.
Part I, contains seven papers dealing with modeling, behavior, reconstruction, predic-
tion, and numerics. Part II, contains nine papers on controlling complex systems by
means of embedding unstable periodic orbits, targeting, filtering, optimization, and
adaptive methods. Part III contains four applications papers including the control of
a bouncing ball, evolutionary stability, chaos in ecosystems, and neural networks.



- (5 P oo
viil Preface
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Triangulating Noisy Dynamical Systems

Stuart Allie, Alistair Mees, Kevin Judd and Dave Watson
Centre for Applied Dynamics and Optimization
Department of Mathematics
The University of Western Australia
Perth, 6907, Australia

Abstract

Triangulation and tesselation methods have proven successful for recon-
structing dynamical systems which have approximately the same dynamics as
given trajectories or time series. Such reconstructions can produce other tra-
jectories with similar dynamics, so giving a system on which one can conduct
experiments, but can also be used to locate equilibria and determine their types,
carry out bifurcation studies, estimate state manifolds and so on. In the past,
reconstruction by triangulation and tesselation methods has been restricted to
low-noise or no-noise cases. This paper shows how to construct triangulation
models for noisy systems; the models can then be used in the same ways as
models of noise-free systems.

1 Introduction

An important part of controlling systems is modeling them. The system identifica-
tion and modeling problem is well-studied for linear systems, but there seem to be
few results for strongly nonlinear systems. In this paper we present an approach
that generalizes the triangulation method of modeling nonlinear dynamical systems,
presented at the previous conference in this series [9].

The earlier work applied only to low-noise systems (roughly, where the noise level
was small compared with the typical separation of the data points being used to build
the model). This paper deals with the case where the noise is non-negligible. We still
simplify matters somewhat, as will be explained below.

1.1 Embedding

It may be helpful to say a few words about embedding and reconstruction. Since this
is a well-discussed area (see e.g. [1, 16]) we shall be brief. We start with a discrete-
time dynamical system with state z, € M, where M is a d-dimensional manifold,
with the dynamics described by

Tep1 = f(ze) + &1,

where f is unknown and &, is the dynamical noise of the system. We assume that
there is a measurement function ¢ : M — R such that

ye = o(ze) + v,
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with v, being the measurement noise. The set {y} is the scalar time series which is
measured. This set is all that is available for constructing the model. From this, we
make vectors in R™ of the form

20 = (Y1, Yt—r, - cYi—(n-1)r)

for an embedding dimension n and lag 7.

By a theorem due to Takens [17], we know that, in general, if n is sufficiently
large. then such a mapping is an embedding A : M — R™ with z, = A(r,). Since A is
an embedding, the following diagram commutes.

Tt Teyl

hl h
'F

It Z¢+1

It 1s the map F which we wish to model. However, because of the form of the
embedded states zy, it is sufficient to estimate the map p : R® — R such that

Yrer = p(2t) + €

where ¢, represents the total noise present.

2 Triangulation approximations

2.1 Triangulating noise-free systems

Before looking at the proposed solution to the general modeling problem let us review
the noise-free case. Notice that when ¢ = 0 the problem is to find a map from R"
to R that fits the given data. One of us (AM) has discussed elsewhere [9, 11] how to
optimally triangulate a set of points in R™ and then to produce a map p that is linear
on each triangle (or simplex, if n > 2), is continuous across triangle boundaries, and
1s such that for each vertex v;,
pui) = hs

where h; is the actual value (the “height”) given by the data at v;. We will see
shortly what is meant by an optimal triangulation; probably the best method for
constructing it is Watson’s [18], and in this paper we will assume that construction
of triangulations is a solved problem.

The definition of / is simple once the triangulation has been constructed: if z € T}
where triangle T; has vertices {vx}, where k is a set of n + 1 labels to the set {v;},
then there is a unique non-negative solution A to the equations

Z () = z, (1)
kEN(x)
> Mz = L (2)
kEN(z)
Now define
plz)= D M2 (3)

keEN(z)
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that is, we express ¢ as a convex combination of the vertices of the triangle it is
in, then use the same convex combination of the vertex heights to approximate the
height at z. It is easy to see that j is continuous and that if the heights did in fact
satisfy

h = p(z)

for some smooth function p then

|5(z) = p(z)| = O(€?)

where ¢ is the diameter of triangle T;. (This, incidentally, explains why we do not
want to use just any triangulation: we should pick the one that minimizes diameters
on average, which turns out to be the Delaunay triangulation (5, 19, 14, 11].)

We can now define an approximation F for the dynamical system from R™ to R":
for example, in the two dimensional case we use

Flye, ye-1) = (b(ye, ye-1), 1) (4)

where we are assuming a simple lag-1 embedding. This map takes triangles into
triangles; for example, Fig 1 shows a triangulation of an embedding of the Henon

i L ! L ! L
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 1: (a) The Delaunay triangulation of some points on an embedding of the
coordinate of a trajectory from the the Henon map. (b) The image of the triangulation
under the map F defined in (4).
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map and the image of the triangulation. This picture alone gives us a good feel for the
effect of the map, which is to take a region of the plane and bend and compress it onto
a roughly horseshoe-shaped region. For more details of applications, see [9, 10, 11].

2.2 Triangulating noisy systems

The approximation defined by (3) assumes that we know the values of the h;. In the
noisy case, if our v; are data points then we have noisy data values as an approxi-
mation to the h;. If the v; are not data points, then we have no a priori information
about the h; = p(v;). We might choose the set {v;} to be a subset of our (embedded)
data points {z}, but there is no requirement to do so. Our modeling problem may
now be expressed as the problem of selecting the v; and the A;.

Assuming we have chosen the v; in some way, we wish to choose the h; so as
to give the best approximation to f given {z:} and {y:}. To do this, we note that
we can define a matrix A with elements A;; = Aj(z;) and we define the A by (1) for
j € N(z;) and Aj(z;) = 0 for j & N(zi). We can then write the approximation as a
matrix equation thus:

plz) = Y Ak (5)
JEN(zi)
= D Aj(zih
J
= (Ah) (6)
where A = (hy,...,hn,)T for n, vertices. We solve for the h; by solving the least
squares problem defined by

minimise : (y — Ah)T(y — Ah) (7)
over : h (8)

where y = (v1,.--, )7

All that remains then is to describe a method for choosing the {v;}. To do this,
we utilize a heuristic based on expansion and contraction of the model. We allow the
model to grow by, say, k vertices, by selecting the k data points with the worst fitted
data values, that is, the largest values of |y; — f(z¢)|. We then remove the k vertices
which are (or are closest to) the data points with the best fitted data values. This
process of growing and shrinking the model continues until either their is no change
in the set of vertices before and after the expansion and contraction or the MSSE
fails to improve after expansion and contraction (in which case, the previous set of
vertices with the better MSSE is kept.)

In brief then, the final algorithm is as follows:

1. Construct an initial affine model using (n + 1) vertices which form a single
simplex containing the entire data set.

9. Select the m data points with the worst fitted data values. Bring these points
into the triangulation.

3. Select the m data points with the best fitted data values. Remove these points
from the triangulation.
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4. If the triangulation has changed and the MSSE has improved, go back to 2.
5. Calculate the minimum description length for the current model size.

6. Have we found a local minimum of description length (as a function of number
of vertices)? If so, stop now.

=~

_ Increase the model size by one by bringing the worst fitted point into the tri-
angulation and goto 2.

We check for the existence of a (local) minimum of description length as a function
of model size (number of vertices) simply by storing the model with the smallest
description length to date and declaring it to be a local minimum if we have not
found a smaller value after a certain number of increases in model size.

3 Which model is best?

3.1 Model Selection Criteria

Once we are able to construct a model of a given size (that is to say, of a given
number of parameters), we must decide how to choose between different sizes. There
are various criteria in general use, such as the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC). In this work however, we utilize the
criterion of Minimum Description Length (MDL) as described by Rissanen [15]. The
description length of a data string is essentially the length of code required, in some
optimal coding system, to completely describe the data in terms of a given model.
The application of MDL to model selection is discussed in some detail in [7].

3.2 Description Length of Triangulation Models

In order to encode our model, we must transmit sufficient information for the receiver
to be able to reconstruct the data completely. One way of doing this is by using
what Rissanen calls a “two-part code”. Firstly, we encode the information about the
residuals of the model as defined by €: = y: — p(z:). It is a well-known result of coding
theory that one can encode this information in a code of length bounded below by
—log, P(e) bits, where P(e) is the probability distribution of the residuals, and this
length is approachable to better than 1 bit [4]. Secondly, we must encode information
about our model. In our case, this means that we must transmit the values of the
vertex positions v; € R™ and their heights h; € R. The values of these parameters
are, in principle, known to arbitrary precision and we must truncate them to transmit
them in a code of finite length. The important feature of the application of the MDL
criterion is that we can optimize over the truncation. That is, we can choose the
_parameter precisions which give the smallest description length of the data.

In the present case, we assume that the residuals have a Gaussian distribution, in
order to simplify the calculation of description length. This is a reasonable assumption
in light of the fact that we choose the heights h; by solving a least squares problem as
stated above. However, in practice, we find that the residuals are often not sufficiently
close to Gaussian and we could improve our models by using a more sophisticated
model of the noise.
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It i1s worth noting how the MDL criterion selects the “best” model in some well-
defined sense. The term in the description length which describes the residuals will,
in general, decrease as the model size increases, due to more accurate fitting of the
data. However, as the model size increases, the code needed to describe the model
parameters will tend to increase. It is in this way that the MDL criterion selects the
model which best achieves a balance between the competing aims of fitting the data
as accurately as possible and the desire for parsimony in the model.

4 Results

In this section, we present the results of some preliminary applications of the modeling
techniques described here.

4.1 Example of triangulated surface: the Ikeda map
The Ikeda map [3] is a map 6 : R*> — R? defined by

: = 04-6/(1+z+y%)
6(z,y) = (a+bx(zcos(z)— ysin(z)),b x (zsin(z) + ycos(z))), 9)

where a and b are parameters. For the data used, we have a = 1, b = 0.7. For
this example, we are modeling the z-component of the map. This then gives us
a map p : R? — R which we model by triangulation of the data. The data used
to generate this figure was a trajectory of some 500 points with Gaussian noise of
standard deviation 0.05 added. Figures 2 and 3 show the surface defined by p and an
example of the piecewise linear surface which is defined by the approximation p. The
model constructed used 25 vertices selected from the data points. Note that although
the approximated surface appears to differ considerably from the correct surface, the
approximation produces dynamics which are very similar to the original system.

4.2 The Rdssler System

The data set chosen was generated by the numerical integration of the equations of
motion which produce the Rossler attractor. These equations are

= -z-y,
= z+ay,
b+ 2(z —c), (10)

[

1l

where a, b and ¢ are parameters. The original time series consisted of 1000 points of
such data. A small amount of normally distributed noise (with a standard deviation
of 0.04) was added to this. The data was embedded in 3 dimensions, with a lag of 3,
and the prediction “lag” was for one time step. Hence, we are modeling the map f
defined by.

ye = f(z1),
where
Ty = (Yt—1, Yt—4, Yt—-7)-
The model selected by the MDL principle contained only 7 vertices chosen from
the data points, plus 4 vertices placed well outside the convex hull of the data to give
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Figure 2: The surface defined by the z-coordinate of the Tkeda map.

an enclosing simplex. Despite this small model (in terms of number of parameters),
the model seems to encompass much of the important dynamics of the system. Sample
trajectories of the model are shown in figure 4 alongside the trajectory from which
the model was constructed. There are two types of trajectories shown, those run
without any “dynamical” noise, and those with. The noise added was chosen by
random selection from the residuals of the model, hence this type of orbit represents
a form of “dynamical bootstrapping.” Note that the model reproduces the important
folding of the attractor which is the major nonlinearity of this system and the source
of the interesting dynamics. In figure 5, we see the accuracy of the model in making
one-step predictions.

5 Conclusions

The present paper can best be seen as a research announcement. It is the beginnings
of applying to triangulation modeling the methods developed by two of the authors
(AM and KJ) for radial basis modeling, as described elsewhere in this volume [6]. A
fuller description of this work and, in particular, more detailed applications, will be
found in (2.

There are two parts to the modeling process: an easy part, involving linear
least-squares fitting (at least when the noise is Gaussian) and a hard part, involving
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Figure 3: The surface defined by the approximation 4 to the z-coordinate of the
Ikeda map.

-

selection of vertex locations. The problem fits into the format we have described
elsewhere as pseudo-linear modeling [7] and our solution is of the same kind as we
used for radial-basis models: we reduce the hard nonlinear part of the problem to a
linear (but still NP-hard) subset selection problem which we then solve by a heuristic
method which has a history of performing well [13, 12, 7). In the present case the
nonlinear part is the selection of vertices in a triangulation of given size, and we
choose some set of candidate vertices such as the data points themselves, then select
the subset as described in Section 2.2. The result is a function from R™ to R which
models the dynamics of one or more embedded time series.

Selecting the best model from among candidates of different sizes is done using
minimum description length, which is described in detail elsewhere. This approach
has worked well with other pseudo-linear models of a number of physical systems [8]
and we expect it to work well in the present case, though further research is necessary.

The main limitations of the present approach are the inaccuracy of the approxima-
tion and the limitations of the noise model used. The former problem is understood,
at least in principle, and the main gains are likely to arise from a more sophisticated
noise model.



