Edited by Anthony C Jones and Michael L Hitchman

Chemical Vapour Deposition

Precursors, Processes and Applications

RSCPublishing

TN304.055

C51 Chemical Vapour Deposition
Precursors, Processes and Applications

Edited by

Anthony C. Jones

Department of Chemistry, University of Liverpool, Liverpool, UK

Michael L. Hitchman

Thin Film Innovations Limited, Glasgow, UK

RSCPublishing

ISBN: 978-0-85404-465-8

A catalogue record for this book is available from the British Library

© Royal Society of Chemistry 2009

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Chemical Vapour Deposition Precursors, Processes and Applications

PREFACE

Chemical Vapour Deposition: Precursors, Processes and Applications

This book aims to give a comprehensive overview of Chemical Vapour Deposition (CVD). CVD involves the deposition of thin solid films from chemical precursors in the vapour phase, and encompasses various deposition techniques, including metal-organic chemical vapour deposition (MOCVD), plasma-enhanced CVD (PECVD), photo-initiated CVD and atomic layer deposition (ALD). The book has been written with the CVD practitioner in mind, such as the chemist who wishes to learn more about CVD process technology, or CVD technologists who wish to increase their knowledge of precursor chemistry. This book should prove useful to those who have recently entered the field, and certain aspects of the text may also be used in chemistry and materials science lecture courses at undergraduate and postgraduate level.

We have attempted to present a logical and progressive overview of the various aspects of CVD processes. Therefore, basic concepts, such as the various types of CVD processes, the design of CVD reactors, reaction modelling and CVD precursor chemistry, are covered in Chapters 1–5. This is followed in Chapters 6–12 by a detailed description of the use of various CVD techniques to deposit a wide range of materials, including semiconductors, metals, metal oxides and nitrides, protective coatings and functional coatings on glass. Finally, in Chapter 13, some commercial aspects of CVD are discussed. The development of CVD technology owes a great deal to collaboration between different scientific disciplines such as chemistry, physics, materials science, engineering and microelectronics, and it is hoped that this book will promote and stimulate continued dialogue between scientists from these different research areas.

We are greatly indebted to the chapter authors for their enormous effort in summarizing their extensive knowledge of many different aspects of CVD, especially in view of undoubted pressures from many directions. We are also grateful to the many members of our research staff, the unsung heroes of this volume, and it is hoped that the book will be a tribute to them. We must also acknowledge the hard work of the publishing staff at the Royal Society of Chemistry, in particular Mrs Annie Jacob and Mrs Janet Freshwater. Finally, our thanks go to our families and the families of our authors for their unstinting support and understanding.

Anthony C. Jones and Michael L. Hitchman Liverpool and Glasgow

Chapter 1 Overview of Chemical Vapour Deposition

	Anthony C. Jones and Michael L. Hitchman	
	1.1 Basic Definitions	1
	1.2 Historical Perspective	2
	1.3 Chemical Vapour Deposition Processes	2
	1.3.1 Conventional CVD Processes	2
	1.3.2 Variants of CVD	7
	1.4 CVD Precursors	11
	1.4.1 Precursor Requirements	1.1
	1.4.2 Precursor Volatility	11
	1.4.3 Precursor Thermal Stability	14
	1.4.4 Precursor Purity and Precursor Analysis	15
	1.4.5 Precursor Purification Techniques	17
	1.5 CVD Reactors	18
	1.6 Materials Deposited by CVD and Applications	22
	1.7 Materials Properties	22
	1.7.1 Layer Morphology	22
	1.7.2 Layer Properties	27
	1.8 Postscript	33
	References	33
Chapter 2	CVD Reactors and Delivery System Technology Susan P. Krumdieck	
	2.1 CVD System Overview	37
	2.1.1 CVD System Performance	38
	2.1.2 Historical Perspective on Reactor Diversity	40
	2.2 CVD Process Fundamentals	40
	2.2.1 Research and Development of CVD Technology	42
	2.2.2 Gas Dynamics and Flow Basics	42
	2.2.3 Molecular and Transition Flow Regimes	44
	2.2.4 High Vacuum CVD Reactor Deposition Model	47

Chemical Vapour Deposition: Precursors, Processes and Applications Edited by Anthony C. Jones and Michael L. Hitchman

© Royal Society of Chemistry 2009

Published by the Royal Society of Chemistry, www.rsc.org

viii

			Viscous Flow Regime Convection Mass Transport	49
		2.2.6	LPCVD Reactor Deposition Model	50
	2.3		m Platform and Equipment Considerations	53
		2.3.1	Contamination: Material Selection and Design	
			Considerations	54
			Establishing the Vacuum: Pumps and Components	58
			Pressure Measurement	65
			Flow Control	67
			Temperature Measurement	71
			Heating Strategies	73
	2.4		entional CVD Reactors	75
			Research-scale Reactors	77
			Tube Reactor	77
	2.5		Showerhead and Planetary Reactors	80
	2.5		Precursor Delivery and Process Control	83
			Liquid Injection Delivery Systems	83
	2.6		Aerosol and Spray Reactors	86
	2.6		Sition Control by Surface Processes	88
			ALD Reactors CBE Reactors	88
	Dof	erences	CBE Reactors	89
	Ker	erences		91
Ch4 2	N/I-	1-1' C	WD D	
Chapter 3			VD Processes	
			llendorf, Theodore. M. Besmann, Robert J. Kee Г. Swihart	
	ana	Mark 1	: Swinari	
	3.1	Introd		93
	3.2	Therm	odynamic Modeling of CVD	95
		3.2.1	Application of Thermochemical Modeling to Chemical	
			Vapor Deposition	95
			Thermochemistry of CVD	95
		3.2.3	Consideration of Non-stoichiometric/Solution Phases	97
			Thermochemical Equilibrium Software Packages	101
			Thermochemical Data and Databases	102
	3.3		or Modeling	103
			Chemically Reacting Fluid Flow	103
		3.3.2	Rate Controlling Processes	104
			General Conservation Equations	104
			Boundary and Initial Conditions	106
			Computational Solution	108
		3.3.6	Uniform Deposits in Complex Reactors	108
			Reactor Design	108
	3.4		nase Thermochemistry and Kinetics	112
		3.4.1	Ab Initio Methods for Predicting Gas-phase	
			Thermochemistry	113
		3.4.2	Sources of Gas-phase Thermodynamic Data	119
	2.5		Modeling Precursor Pyrolysis	119
	3.5		nism Development	125
		3.5.1	Kinetic Regimes	125

		3.5.2	Global versus Elementary Mechanisms	126
		3.5.3	Gas-phase Chemistry	127
		3.5.4	Sources of Gas-phase Kinetics Information	129
		3.5.5	Surface Chemistry	129
	3.6		e Formation and Growth	141
			Introduction	141
			Modeling Approaches	141
		3.6.3	Mechanisms of Particle Formation, Growth	
			and Transport	146
			Particle Formation: Modeling Examples	149
			Summary	150
	Ref	erences		151
Chapter 4	Ato	mic Lay	er Deposition	
	Mik	ko Rita	la and Jaakko Niinistö	
	4.1	Introd		158
	4.2		Features of ALD	158
		4.2.1	Principle and Characteristic Features of ALD Limitations of ALD	159
				161
	13		Comparison of ALD and CVD sor Chemistry	167
	4.5	4.3.1	a an and a second a	167
			Precursor Types	167
			Characterization of ALD Chemistry	170 175
	4 4		Reactors	181
	•••	4.4.1		182
			Precursor Sources with Valving System	182
		4.4.3		185
			Batch Reactors	187
			Wall Temperature	188
			Plasma Sources	188
		4.4.7	Other Reactor Configurations	190
		4.4.8	Process Control Devices	191
	4.5	Applica	ations of ALD	191
		4.5.1	Thin Film Electroluminescent Displays (TFELs)	192
		4.5.2	Magnetic Heads	192
		4.5.3	Microelectronics	192
		4.5.4	Protective Coatings	197
		4.5.5	Solar Cells	197
		4.5.6	The state of the s	197
		4.5.7	5 (100 to 100 to	197
		4.5.8	Coatings on Powders	198
		4.5.9	•	198
		4.5.10	Coatings on Polymers	199
		4.5.11	Micro-electro-mechanical Systems (MEMS)	199
	4.5	4.5.12	Nanotechnology	199
	4.6	Conclu	sions	200
	Kete	rences		200

Chapter 5		y of CVD and ALD Precursors zad Malik and Paul O'Brien	
	5.1 Introduct	ion	207
	5.2 Precursor	Requirements for CVD	207
	5.2.1 Pr	ecursor Purity	207
		ecursor Reactivity	208
	5.2.3 Vo		208
		ability in Air	208
		oxicity	208
		nthesis	208
		nvironment and Cost	208
		alcogenides	209
		ternative Chalcogenide Precursors	209
	5.3.2 Sin 5.4 Metal Pni	ngle-molecule Precursors	211
		I-V Materials	230
	5.4.1 III	- V Materials	230
		ecursor for Metals	234 234
		VD of Metals	235
	5.6 Metal Ox		237
		ecursors	237
		VD of Metal Oxides	240
	5.7 Chemistry	y of ALD Precursors	245
		LD Precursors	245
	5.7.2 AI	LD Precursors for Oxides	247
		LD of Metals	249
		ganometallic Precursors	250
		on-metal Precursors	252
		etal Nitrides	253
		etal Films and Plasma-ALD	253
	References		254
Chapter 6		C ompound Semiconductors u, Ravi Kanjolia and Russell D. Dupuis	
	6.1 Evandones	At a CHI V Comment of the state	
		ntals of III-V Compound Semiconductors aracteristics of III-V Compound Semiconductors	272
		aterial Properties of III-V Compound	273
		miconductors	279
		ons of III-V Compound Semiconductors	279
		otonic Device Applications	280
		ectronic Device Applications	285
		ntals of CVD Processes for III-V Compound	263
	Semicond		286
		storical Overview of MOCVD Technology	286
		emical Reactions in MOCVD Growth	287
		ermodynamics, Kinetics and Hydrodynamics	207
		the MOCVD Process	290

		6.3.4	Growth Mechanisms of the MOCVD Process	
			in a Reactor Chamber	292
	6.4		CVD Reactor Systems	293
		6.4.1	Safety Apparatus and System	294
			Gas Delivery System	296
		6.4.3	Growth Chamber	299
			Exhaust System	301
	6.5		rsors – Synthesis, Purification, Analysis and Delivery	302
		6.5.1		302
			Analysis	305
			Vapor Phase Transport and Measurements	305
			Condensed Phase Group V Precursors	307
	6.6		CVD of Specific III-V Materials	309
			GaAs-based Materials	309
			InP-based Materials	310
			GaSb-based Materials	311
	(7		GaN-based Materials	312
	6.7		CVD in the Future	315
	6.8		nary and Conclusions	315
	Rei	erences		315
Chapter 7			Vapor Deposition of Metals: W, Al, Cu and Ru	
	Bing	g Luo a	and Wayne L. Gladfelter	
	7.1		duction	320
			Deposition Chemistry – General Comments	320
		7.1.2	Induction Periods, Selectivity, Microstructure and the	(1007) (1000)
	7.0	CLUD	Critical Role of Nucleation	322
	7.2		of Tungsten	322
			Deposition on Si and SiO ₂ from WF ₆	323
			WF ₆ –H ₂ System	323
			WF ₆ –SiH ₄ System	324
	7.3		Tungsten ALD	326
	1.3		of Aluminium Propuration	326
	7.4		Precursors of Corner	327
	7.4		of Copper Denogition from Copper(u) Progressions	331
		7.4.1	Deposition from Copper(II) Precursors Deposition from Copper(I) Precursors	331
		7.4.3	Copper ALD	334 336
	7.5		enium CVD	
	1.5	7.5.1	Ruthenium CVD from Ru β-Diketonates	337 337
		7.5.2	Ru(CO) ₅ , Ru ₃ (CO) ₁₂ and other Precursors Containing	551
		7.0.2	the CO Ligand	338
		7.5.3	Ruthenium CVD from Sandwich or Half-sandwich	550
			Precursors	340
		7.5.4	Ruthenium CVD from RuO ₄	341
		7.5.5	Ruthenium ALD	344
	7.6		uding Remarks	344
	Refe	rences	-	345

спарист о	Applications Anthony C. Jones, Helen C. Aspinall and Paul R. Chalker					
	8.1	Introduction	357			
	8.2	Precursor Chemistry	358			
	0.2	8.2.1 β-Diketonates and Related Ligands	360			
		8.2.2 β-Ketoiminates	363			
		8.2.3 Alkoxides	364			
		8.2.4 Alkylamides	369			
		8.2.5 Amidinates	369			
		8.2.6 Organometallic Precursors	370			
	8.3	CVD of Dielectric Oxides	372			
		8.3.1 CVD of ZrO ₂ and HfO ₂	372			
		8.3.2 CVD of Zr- and Hf-silicate	378			
		8.3.3 CVD of Hf-aluminate	379			
		8.3.4 CVD of Lanthanide Oxides	380			
		8.3.5 CVD of Multi-component Lanthanide Oxides	382			
		$8.3.6$ CVD of TiO_2	384			
		8.3.7 CVD of Al_2O_3	386			
		8.3.8 CVD of Ta_2O_5	386			
	8.4		387			
		8.4.1 CVD of Pb(Zr,Ti)O ₃	388			
		8.4.2 CVD of Pb($Sc_{0.5}Ta_{0.5}$)O ₃	389			
		8.4.3 CVD of $Pb(Mg_{0.33}Nb_{0.66})O_3$	391			
		8.4.4 CVD of $SrBi_2(Ta_xNb_{1-x})_2O_9$	392			
		8.4.5 CVD of Bismuth Titanate (Bi ₄ Ti ₃ O ₁₂)	394			
		8.4.6 CVD of SrTiO ₃ and (Ba,Sr)TiO ₃	395			
	8.5	by by by by	396			
		8.5.1 MOCVD of RuO ₂ , LaNiO ₃ and LaSrCoO ₃	396			
		8.5.2 CVD of ZnO	397			
		8.5.3 CVD of Magnetic and Magnetoelectric Oxides	397			
	8.6		397			
	8.7		400			
		nowledgement	400			
	Refe	erences	400			
Chapter 9	Met	al-organic Chemical Vapour Deposition of Refractory Transition al Nitrides and A. Fischer and Harish Parala				
	9.1	Introduction and Overview	413			
19	9.2	Applications of Transition Metal Nitrides	414			
		9.2.1 Diffusion Barrier Layers	414			
		9.2.2 Gate Electrode Applications	415			
	9.3	Crystal Chemistry and Materials Properties	416			
		9.3.1 Titanium Nitride, Zirconium Nitride and Hafnium Nitride	416			
		9.3.2 Niobium Nitride and Tantalum Nitride	417			
		9.3.3 Molybdenum Nitride and Tungsten Nitride	418			
	9.4	Thin Film Deposition of Transition Metal Nitrides	420			

		9.4.1 Precursor Chemistry for MOCVD and ALD of Nitrides	420
		9.4.2 Titanium Nitride Deposition	422
		9.4.3 Zirconium and Hafnium Nitride Deposition	427
		9.4.4 Niobium and Tantalum Nitride Deposition	427
		9.4.5 Molybdenum and Tungsten Nitride Deposition	433
	9.5	Conclusions and Prospects	437
	Ackı	nowledgements	437
		erences	438
Chanter 10	CVI	O of Functional Coatings on Glass	
chapter 10		P. Parkin and Robert G. Palgrave	
	10.1	Introduction	451
	10.1	10.1.1 Architectural Glazing	452
		10.1.2 Automotive/Aerospace Glazing	452
		10.1.3 Container Coating	452
		10.1.4 Industrial Glass Manufacture and Coating	453
		10.1.5 On-line Coating Using the Float Glass Process	453
		10.1.6 On-line Coating of Glass Containers	454
		10.1.7 Glass as a Substrate	455
		10.1.8 Influence of Precursor Chemistry on Glass	455
		10.1.9 Overview of Functional Coatings Applied	733
		to Glass	456
	10.2	CVD of Transparent Conducting Coatings on Glass	456
		10.2.1 Indium Tin Oxide	456
		10.2.2 F, Cl, Sb Doped Tin Oxide	458
	10.3	CVD of Reflective Coatings on Glass	459
		10.3.1 Titanium Nitride Thin Films	459
	10.4	CVD of Electrochromic and Photochromic Coatings	460
		10.4.1 Introduction to Metal Oxide Based Electrochromic	.00
		and Photochromic Devices	460
		10.4.2 Mechanism of Electrochromism	462
		10.4.3 CVD of Electrochromic and Photochromic Tungsten	.02
		Oxide Coatings	464
		10.4.4 Atmospheric Pressure CVD of WO ₃	464
		10.4.5 Aerosol-assisted CVD of WO ₃	466
	10.5	Vanadium Dioxide Thermochromic Coatings	467
		10.5.1 Introduction to Thermochromic VO ₂	467
		10.5.2 Atmospheric Pressure CVD of VO ₂	468
		10.5.3 Low Pressure CVD of VO ₂	471
	10.6	Self-cleaning Coatings on Glass	472
	Refer	rences	473
Chapter 11	Photo	o-assisted CVD	
		rt J. C. Irvine and Dan Lamb	
	11.1	Introduction	477
		Principles of Photo-assisted CVD	477
		11.2.1 Photothermal Processes	477
		11.2.2 Photolysis	478 479
			4/7

	C 4 4
XIV	Contents
711 T	

		11.2.3 Photocatalysis	482
		11.2.4 Photosensitization	486
	11.3	Lamps and Lasers for Photolysis	487
	11.4	Further Examples of Photolysis in Photo-assisted CVD	489
	11.5	Conclusions	492
	Refe	rences	492
Chapter 12		ma Enhanced Chemical Vapour Deposition Processes vei E. Alexandrov and Michael L. Hitchman	
	12.1	Introduction	494
	12.2	Remote Plasma Enhanced CVD (RPECVD) Processes	495
		12.2.1 Introduction	495
		12.2.2 Advantages and Disadvantages of RPECVD	496
		12.2.3 RPECVD of Silicon Nitride Films	500
	12.3	Atmospheric Pressure PECVD (AP-PECVD) using	
		Non-thermal Plasmas	510
		12.3.1 Introduction	510
		12.3.2 Sources of Atmospheric Pressure, Non-thermal Plasmas	510
	10.4	12.3.3 Applications of Electrical Discharges for AP-PECVD	511
		Conclusions	530
	Keie	rences	530
Chapter 13		mercial Aspects of CVD ort Barry Leese and Alan Rodney Mills	
	13.1	CVD Industries Introduction	535
		13.1.1 Glass Coatings	536
		13.1.2 Silicon Devices	537
		13.1.3 Compound Semiconductors	538
	13.2	Industry Structure	541
		13.2.1 The Sheet Glass Industry	541
		13.2.2 The Silicon Industry	541
		13.2.3 The III-V LED Industry 13.2.4 III-V Semiconductor Lasers	542 543
	13 3	Precursor Selection	543 544
		Commercial Considerations	544
	15.1	13.4.1 Silicon	544
		13.4.2 Compound Semiconductors	545
		13.4.3 Architectural Glass Coating	546
		13.4.4 Thin Film Transistor (TFT) and Solar Applications	546
	13.5	Health, Safety and Analytical	546
		13.5.1 Health and Safety	546
		13.5.2 Analytical Requirements	547
		Typical Precursors for the Silicon Semiconductor Industry	548
	13.7	III-V CVD HB Light Emitting Diode Applications	548
		13.7.1 Historical LED Production	548
		13.7.2 Overview of CVD Processes	550
		13.7.3 Hand Held Devices and Display Backlighting	552

Contents	XV
Somenis	Av

	13.7.4	Large Display Backlighting	552
	13.7.5	Portable Lighting	553
	13.7.6	Automotive and Vehicle Uses	555
	13.7.7	Signage and Channel Letters	557
	13.7.8	Signals – Traffic	559
	13.7.9	Aviation Lighting	559
1	13.7.10	Marine Lighting	560
1	13.7.11	General Lighting and Illumination	561
1	13.7.12	Group III-V High Frequency Devices	564
1	13.7.13	Group III-V Semiconductor Diode Lasers	566
1	13.7.14	Solar Cells	567
1	13.7.15	Silicon Carbide Applications	569
Subject Index			571

CHAPTER 1

Overview of Chemical Vapour Deposition

ANTHONY C. JONES^a AND MICHAEL L. HITCHMAN^b

^a Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK; ^bThin Film Innovations Ltd., Block 7, Kelvin Campus, West of Scotland Science Park, Glasgow, G20 0TH, UK

1.1 Basic Definitions

In the broadest sense chemical vapour deposition (CVD) involves the formation of a thin solid film on a substrate material by a *chemical reaction* of vapour-phase precursors. It can thus be distinguished from physical vapour deposition (PVD) processes, such as evaporation and reactive sputtering, which involve the adsorption of atomic or molecular species on the substrate. The chemical reactions of precursor species occur both in the gas phase and on the substrate. Reactions can be promoted or initiated by heat (thermal CVD), higher frequency radiation such as UV (photo-assisted CVD) or a plasma (plasma-enhanced CVD). There is a sometimes bewildering array of acronyms covered by the overall cachet of CVD and the interested reader is referred to several reviews. ¹⁻⁴ Some of the more commonly used acronyms are defined below.

Metal-organic chemical vapour deposition (MOCVD) is a specific type of CVD that utilizes metal-organic precursors. In the strictest sense a metal-organic (or organometallic) compound contains a direct metal-carbon bond (σ or π) (e.g. metal alkyls, metal carbonyls). However, the definition of MOCVD has broadened to include precursors containing metal-oxygen bonds (e.g. metal-alkoxides, metal- β -diketonates) or metal-nitrogen bonds (e.g. metal alkylamides), and even metal hydrides (e.g. trimethylamine alane).

Metal-organic vapour phase epitaxy (MOVPE) or organometallic vapour phase epitaxy (OMVPE) is an MOCVD process that produces single crystal (*i.e.* epitaxial) films on single crystal substrates from metal-organic precursors. In MOCVD and MOVPE gas-phase reactions can sometimes play a significant role in the deposition chemistry.

Plasma-assisted or plasma-enhanced CVD (PECVD) is a technique in which electrical energy rather than thermal energy is used to initiate homogeneous reactions for the production of chemically active ions and radicals that can participate in heterogeneous reactions, which, in turn, lead to layer formation on the substrate. A major advantage of PECVD over thermal CVD processes is that

2 Chapter 1

deposition can occur at very low temperatures, even close to ambient, which allows temperaturesensitive substrates to be used.

Atomic layer deposition (ALD), sometimes called atomic layer epitaxy (ALE), alternatively-pulsed CVD, or atomic layer chemical vapour deposition (ALCVD), is a modification of the CVD process in which gaseous precursors are introduced sequentially to the substrate surface and the reactor is purged with an inert gas, or evacuated, between the precursor pulses. The chemical reactions leading to film deposition in ALD occur exclusively on the substrate at temperatures below the thermal decomposition temperature of the metal-containing precursor and gas-phase reactions are unimportant.

Chemical beam epitaxy (CBE) is high vacuum CVD technique that uses volatile metal-organic precursors and gaseous co-precursors. The closely related technique of metal-organic molecular beam epitaxy (MOMBE) uses volatile metal-organic precursors and co-precursor vapour derived from the solid element. In CBE and MOMBE the chemical reactions occur only on the substrate, leading to single crystal films and so gas-phase reactions play no significant role in film growth. Section 1.3 gives a more detailed description of these processes.

1.2 Historical Perspective

In common with many technologies, developments in CVD have largely arisen out of the requirements of society. These developments have been most rapid when other thin film deposition technologies have proved problematic or inadequate, for instance in the production of multiple thin films, as in modern semiconductor devices, or when the coating of large surface areas is required, as in large-scale functional coatings on glass. Several excellent reviews describe the historical development of CVD processes, ^{2,5,6} and the published literature from the earliest days to the mid-1960s is covered by a comprehensive review by Powell *et al.*⁷ Therefore, this section gives only a brief description, highlighting some key advances.

Probably the earliest patent describing a CVD process was taken out by a certain John Howarth, for the production of "carbon black" for use as a pigment. Unfortunately, due to rather lax health and safety standards, the process only succeeded in burning down the wooden plant. The early electric lamp industry provided another early impetus for CVD, and a patent issued in 1880 to Sawyer and Mann describes a process for the improvement of carbon fibre filaments. However, these proved too fragile and later patents describe CVD processes for the deposition of various metals to produce more robust lamp filaments. 10,111

One of the earliest examples of the CVD of metals is the deposition of tungsten, reported as early as 1855. Wöhler used WCl₆ with hydrogen carrier gas to deposit tungsten metal.¹² Later in the century (1890), the famous Mond Process was developed. This describes the deposition of pure nickel from nickel tetracarbonyl, Ni(CO)₄, ^{13,14} and was used for the refinement of nickel ore.¹⁵

The first reports of the deposition of silicon by CVD by the hydrogen reduction of SiCl₄ appear as early as 1909¹⁶ and 1927,¹⁷ and the widespread use of thin silicon films in the electronics industry is anticipated by the CVD of Si-based photo cells¹⁸ and rectifiers¹⁹ just after World War II.

During the late 1950s, triisobutylaluminium, [Bu₃Al] began to be used extensively to catalyze the polymerization of olefins by the Ziegler–Natta process. At around the same time, it was found that the pyrolysis of [Bu₃Al] gave high purity Al metal (>99 at.%). This led to its use in the early 1980s as a CVD precursor to Al metal for very large scale integration (VLSI) applications.^{20,21} In patent literature of the late 1960s, aluminium trihydride (AlH₃, alane) was found to be useful for plating Al films from the vapour phase and by electroless deposition,^{22–24} which led to the much later use of alane adducts such as [AlH₃(NMe₃)] as CVD precursors for high purity Al thin films.²⁵ The reader is referred to Chapter 7 (Section 7.3) for recent developments in Al CVD.

Another important development in the history of CVD was the introduction of "on-line" CVD architectural coatings by Pilkington (now NSG Group). These coatings are deposited on a very large scale by atmospheric pressure CVD on a float glass production line.²⁶ By applying the coating directly to the float glass manufacturing line, economies of scale and production are achievable that are not possible with "off-line" deposition processes such as sputtering. Perhaps the most notable of these is fluorine-doped tin oxide, [SnO₂:F] developed by Pilkington in the mid-1980s ("Pilkington K-Glass"). This is a low thermal-emissivity (low–E) coating on windows, which prevents heat loss from the home and is essential to modern ecological energy saving efforts (Chapter 10, Section 10.1.1). It can be deposited using precursors such as [Me₄Sn], [SnCl₄] with halo-fluorocarbons or HF (Chapter 10, Section 10.2.2). A much more recent commercial product of Pilkington is "self-cleaning" glass. This has been coated on-line with a thin transparent film of TiO₂, and this chemically breaks down dirt by photocatalysis in sunlight (Chapter 10, Section 10.6).

Despite the various developments in CVD described above, the major impetus to the technology has undoubtedly been provided by the rapid development of the microelectronics industry since the mid-1970s. This has led to a requirement for very thin high purity films with precise control of uniformity, composition and doping.

Thin epitaxial films of n- or p-doped Si are the basic requirement for all Si integrated circuit technology. One of the earliest reports of silicon epitaxy was the closed tube transport of SiI₄ produced by heating solid Si in the presence of iodine.²⁷ Epitaxial Si films were later produced in the 1970s on a large commercial scale by the pyrolysis of monosilane (SiH₄) in H₂.²⁸

Interest in the use of metal-organic compounds for CVD applications began in the early 1960s. The first reported preparation of a III-V material from a Group III metal-organic and a Group V hydride was by Didchenko *et al.* in 1960, who prepared InP in a closed tube by the thermal decomposition at 275–300 °C of a mixture of [Me₃In] and liquid [PH₃].²⁹ Next, in 1962, Harrison and Tomkins produced InSb in a closed tube by heating a mixture of [Me₃In] and [SbH₃] at 160 °C, and they also produced GaAs by heating a mixture of [Me₃Ga] and [AsH₃] at 200 °C.³⁰ In 1961 and 1965 patent applications by the Monsanto Co. claimed methods of depositing III-V compounds "suitable for use in semiconductor devices".^{31,32} The processes involved the pyrolysis of volatile Group III and Group V compounds in an open tube system on a cubic crystal substrate to produce epitaxial films.

However, the Monsanto applications were of a rather general nature, listing a large range of volatile Group III compounds, and the few specific process examples given mainly involved Group III trihalides. In 1968, Manasevit and co-workers at the Rockwell Corporation gave the first clear description of the use of metal-organic compounds for the chemical vapour deposition of III-V materials. The first publication describes the deposition of GaAs by pyrolysis of a gas phase mixture of [Et₃Ga] and [AsH₃] in an open tube system using H₂ as the carrier gas.³³ Manasevit named the technique metal-organic chemical vapour deposition (MOCVD) and a patent was later filed for the MOCVD of a range of III-V materials and wide band-gap compound semiconductors.³⁴

The emphasis in Manasevit's early work was on growth of non-epitaxial films on insulating substrates such as sapphire and spinel. However, in 1969 the growth of epitaxial GaAs on a GaAs substrate by metal-organic vapour phase epitaxy (MOVPE) was demonstrated.³⁵ Subsequently, a wide range of III-V compounds were deposited by MOCVD (or MOVPE), including AlGaAs,³⁶ InP, InAs, InGaAs,InAsP,^{37,38} GaN and AlN,³⁹ although semiconductor device quality III-V materials still had not been produced. This was due largely to low purity precursors (often obtained from commercial suppliers of metal-organics for catalysis applications) and non-optimized MOCVD reactors and processes. In 1975, however, high-purity device quality GaAs films were grown⁴⁰ that had a low residual carrier concentration of $n = 7 \times 10^{13}$ cm⁻³ and high electron mobility ($\mu_{77K} = 120\,000\,\text{cm}^2\,\text{V}^{-1}\,\text{s}^{-1}$) (Section 1.7.2.4). Conventional techniques for the deposition of III-V materials such as liquid phase epitaxy (a combined melt of the components) proved incapable of producing the very thin multilayer structures required for efficient III-V devices and so MOVPE technology developed with ever increasing pace, and state-of-the-art GaAs photocathodes and field effect