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Preface

This manuscript, “Small Signal Analysis of Power Systems,” is
the result of a collaborative effort between the Indian Institute of
Science, Bangalore, India, and the University of Illinois at Urbana-
Champaign supported under the United States-India co-operative
science program. The corresponding agencies were the Department
of Science and Technology in India and the National Science Foun-
dation in the United States. The faculty involved were Professors
D. P. Sen Gupta and K. R. Padiyar from India and Professor M. A. Pai
from the United States. The title of the project was NSF INT 93-
02565 “Small Signal Stability of Electric Power Systems.” Besides
the several research papers that have been produced on this topic
by the investigators, a central purpose was to produce a manuscript
that documents the state of the art in this field. In this manuscript
we discuss the areas where small signal analysis is heavily used in
power systems.

In Chapters 2 and 3 (Professor Sen Gupta) the emphasis is on
the nature of oscillations and their physical meaning in relation to
the synchronous machine, which is modelled in detail. Chapters 4
and 5 (Professor Padiyar) discuss the phenomena of sub-synchronous
resonance in power systems and its control as well as the modelling
of flexible ac transmission systems (FACTS) controllers. Chapters 6
and 7 (Professor Pai) discuss the framework of multimachine small
signal analysis to include static var compensators (SVC) and FACTS
controllers. Small signal analysis with both these devices is discussed.
We also discuss briefly the selective computation of eigenvalues, its
mathematical basis, and the practical algorithms used in industry.

The authors thank Karen Chitwood for typing the original ver-
sion, Nina Parsons for the drawings, and Francie Bridges for typing
the final version of the manuscript. The authors also acknowledge the
support of the National Science Foundation and the Power Affiliates
Program at the University of Illinois.

M. A. Pai
Sen Gupta

D. P.
K. R. Padiyar
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Chapter 1

INTRODUCTION

1.1 Overview

In this chapter we give a brief introduction to the role of small signal analysis
in power system dynamics stability and control.

Power systems differ from other physical systems in terms of the at-
tributes associated with their large-scale nature. They are nonlinear, as
most dynamic systems are, and they are very large in terms of the number
of dynamic variables. Typically, a large interconnected system may have
10,000 buses or nodes. Roughly, at about 1,000 of these nodes there are
dynamic devices connected, typically synchronous machines and their as-
sociated controls such as the excitation system, turbine-governor, and the
fuel source (boiler, hydro or nuclear). Depending on the time frame of the
phenomena to be studied, the number of state variables at each node can
range from 2 to 20. Thus, the total number of state variables could range
from 2,000 to 20,000. These state variables are in the frequency range of
1 — 3 Hz. At the other nodes, there are loads whose dynamics are largely
ignored except for special studies. We also ignore the 60 Hz transients in the
transmission lines and the stator of the machines. Thus, we have a set of
nonlinear differential equations coupled by algebraic variables through the
network constraints. In mathematical language, the description is of the
form

f(z,y,u) (1.1)
0 =" g,y | (1.2)

where z, y are the state and algebraic variable vectors, respectively, and u
is the input vector. These inputs typically correspond to reference settings

1



2 ‘ INTRODUCTION

for turbine power, reference voltage at generator terminals, and reference
voltage for other control devices such as the static var compensator.

The mathematical modeling of the power system corresponding to (1.1)
and (1.2) is not the subject matter of this monograph. It is covered well in
the literature elsewhere [1.1]-[1.5]. Once the model is derived, the problems
of simulation, stability, and control are of importance. This topic is again
very extensive and well researched. In this monograph, we cover only some
aspects of these problems. Specifically, we concentrate on stability and
control issues. Power systems have evolved over the years in a fairly robust
manner. Although nonlinear simulation is of interest, control mechanisms
to stabilize the system are always designed through linear models. Hence,
the areas of interest to us are low-frequency oscillations, sub-synchronous
resonance, small signal stability, and computation of selected eigenvalues
in an otherwise large system. To complement these, we review synchronous
machine models, circuit-based interconnection of components, and (as an aid
for further research) present the flexible ac transmission systems (FACTS)
device models.

1.2 Chapter Overviews

Chapter 2 presents an overview of the synchronous machine models. There
are quite a few models with different notations in the literature. The purpose
of this chapter is to bring these under a common framework and give a
physical basis to them. ;

Chapter 3 discusses low-frequency os01llat10ns and the design of power
system stabilizers. In the years prior to 1970, most power engineering stud-
ies related either to large perturbations or small perturbations. These were
called transient and steady state stability, respectively. As systems became
more interconnected, a new phenomenon in the form of spontaneous build-up
of low-frequency oscillations began to appear. A well-documented example
was the repeated occurrence of oscillation in voltage, frequency, and power
in the Saskatchewan-Manitoba-Hydro West interconnection in the period
1962-65. The oscillations at a frequency of approximately 0.35 Hz often
increased in size until one of the tie lines tripped due to protective relay
action. In 1964-65 a similar phenomena was observed in the Western States
Co-ordinating Council (WSCC) system. Since then, there have been reports
of similar instability from all parts of the world. To distinguish it from the
historical steady state stability, this phenomena is generally referred to as
the dynamic stability, or more frequently, as low-frequency oscillations. Lin-
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ear models around an operating point are adequate to study this phenom-
ena and devise appropriate controls. These models are referred to as the
Heffron-Phillips or DeMello-Concordia models. This oscillatory phenomena
is generally of the rotor mechanical mode. It is either a local or an inter-
area mode, the former in the range of 1-3 Hz, and the latter in the range of
0.3-0.8 Hz.

Chapter 4 discusses the sub-synchronous resonance issue. These are not
low frequency oscillations but high frequency (= 30 Hz) oscillations due to
long shafts and distributed rotor mass on these shafts. They are also called
torsional oscillations and may occur due to interaction with the network L-C
parameters. Techniques to suppress these are quite critical.

Chapter 5 discusses flexible ac transmission systems devices. Because of
the excellent reliability of high-power electronics that can be switched at high
speeds, one can have variable compensation from bus to ground or between
buses. This increases the stability as well as transmission capability of the
network. The emphasis will be on development of block diagrams suitable
for systems studies.

Chapter 6 briefly reviews the nonlinear multimachine power system model.
The exciter models as well as load representation are discussed. The most
popular form of the differential-algebraic equation (DAE) model of a multi-
machine system is given by

z = f(z,V,u) (1.3)
I(z,V) = YV (1.4)

In this model, the so-called stator algebraic equations have been eliminated.
z is the state vector representing the dynamic variables. I, V are the bus
injected currents and bus voltages, respectively, in polar or rectangular form,
respectively. w is the input vector typically consisting of the turbine power
setting and voltage reference setting of the excitation system. Equation (1.4)
can be converted to the power balance form by pre-multiplying (1.4) by
Diag(V;*) and then equating the real and imaginary parts of the resulting
vector elements. Thus, (1.2) can be considered as a generic representation
in either current or power balance form for the algebraic part of the DAE
model. The reason for having the DAE form is the recognition of the fact
that the dynamics of the state variables x is much slower than the dynamics
in the network or the machine stators. Strictly, one should have (1.2) in the
form

e = g(z,y) (1.5)
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where ¢ is a small parameter and y is an appropriately defined state vector.
For small systems such as the single machine system, (1.1) and (1.5) can
be solved using singular perturbation [1.3] or by the asymptotic expansion
method. But in most system studies, € is set equal to zero, thereby giving
rise to the differential-algebraic system. The DAE model either in (1.1)
and (1.2), or (1.3) and (1.4) form is rich in terms of nonlinear phenomena.
Symbolically, we have a generic description of the form

z = f(ac,y,u) (16)
0 = g(Iayap) (17)

p is a parameter vector in the algebraic part of the system and could rep-
resent loads or transmission line parameter. As the parameter vector p is
varied, we can examine the eigenvalues of the linearized system. Depend-
ing on the modelling, either a real eigenvalue goes to the right half plane
or a pair of complex eigenvalues goes to the right half plane. The former
is called saddle-node bifurcation and the latter is called Hopf bifurcation.
Saddle node bifurcation was first studied using only static models. Since the
1980’s there has been a very extensive literature on these topics [1.6], [1.7].
Whereas in the 1960’s, the interconnected nature of the system gave rise to
low-frequency oscillation. In the 1980’s the stressed nature of the system
was responsible for the voltage instability phenomena. To study these phe-
nomena, we need appropriate linear models. These are developed including
the control devices such as the power system stabilizer (PSS) and FACTS
controllers.

In Chapter 7, the general theory underlying selective eigenvalue compu-
tation is first discussed. A generalized procedure to compute eigenvalues of
interest is explained. It also turns out that this generalized procedure is the
starting point of the analysis of essentially spontaneous oscillations in power
systems (AESOPS) algorithm and later enhanced as the program for eigen-
value analysis of large systems (PEALS) program. We explain the general
Newton-based algorithm and, as a special case, explain the PEALS algo-
rithm. The motivation for selective eigenvalue analysis is that in the case of
low-frequency oscillations one would like to associate a particular eigenvalue
with a particular machine. Also, this area of interest is closely related to
the selective modal analysis (SMA) that is used in obtaining reduced order
models [1.4].
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The manuscript is organized in three parts.

I. Chapters 2 & 3 Synchronous machine model and low-frequency
oscillations
II. Chapters4 & 5 SSR and FACTS controllers
III. Chapters 6 & 7 Multimachine small signal analysis, dynamic
voltage stability, and selective eigenvalue analysis

The notation in each of the three parts may not be consistent with the other
parts. Hence, the three parts can be read independently.
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Chapter 2

OVERVIEW OF
SYNCHRONOUS
MACHINE MODELS: A
Physical Interpretation

2.1 Introduction

Synchronous machine models have many versions. Almost all of these are
based on Park’s model first proposed in 1929 [2.1]. The variations are mostly
in details, mainly in sign conventions and in the representation of damper
windings. Blondel’s two-reaction theory [2.2] was indeed a breakthrough
in the representation of a synchronous machine, and Park’s transformation
owes its origin to the two-reaction theory. The main problem in the transient
analysis of an electrical machine is that the inductances of the coils are
functions of rotor position.

In an alternator, for example, Figure 2.1, we may describe the transient
voltage/current relationship of the three stator coils a, b, and ¢ and the field
coil f as:

Vo = Raia+ p(Laia) + p(Mabib) =+ p(Macic) + p(beif)

14 Ryip + p(Lpiv) + p(Mbaia) + p(Mocic) + p(Mogif)

Vo = Reic+p(Leic) + p(Meaia) + p(Meviy) + p(Mcriy)

V; = Ryis+p(Lgig) + p(Mjaia) + p(Myvis) + p(Mjcic) (2.1)

(p = d/dt, L stands for self-inductance of a coil and M stands for the mutual
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