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Preface

This volume comprises the Lecture Notes of the CIMPA Summer School
Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray
University, Istanbul during June 13-25, 2005. In the Summer School there were
fifteen lectures forming an impressive group of mathematicians covering a wide
range of topics related to hypergeometric functions. The full schedule of talks
from the workshop appears on the next page. In addition to the lecture notes
submitted by its lecturers, this volume contains several research articles.

A group of fourty graduate students and young researchers attended the
school. Among the participants there were 2 Algerian, 3 American, 1 Armenian, 1
Bulgarian, 1 Canadian, 3 Dutch, 2 Georgian, 7 German, 1 Indian, 2 Iraqi, 1 Iranian,
1 Italian, 1 Russian, 5 Japanese, 23 Turkish and 1 Ukrainian mathematicians,
including the lecturers.

We would like to thank the Centre des Mathématiques Pures et Appliquées,
for their financial support and Professor Michel Jambu for organizational help. We
could support participants from across the region thanks to the generous finan-
cial help provided by the International Center for Theoretical Physics (ICTP)
and the International Mathematical Union (IMU). The local participants has
been supported by the Scientific and Technological Research Councel of Turkey
(TUBITAK).

This summer school has been realized not only by financial support from
its sponsors but also thanks to the generousity of its lecturers, who all agreed to
finance their travel from their own personal grants. Some of them did so also for
the accomodation.

The proposal for the AGAHF Summer School was submitted to CIMPA in
February 2004. During the long preparatory process and during the summer school,
Aysegiil Ulus, Ozgiir Ceyhan, and Ozgﬁr Kisisel contributed at various levels to
the organization. We are grateful to them.

Sabine Buchmann is a French artist living in Istanbul, who likes to draw
Ottoman-style miniatures of the boats serving across the bosphorus; these boats
are an inseparable part of the city panorama. When asked, she liked the idea of
a boat full of mathematicians and drew it for the conference poster — with the
names of all the lecturers hidden inside, written in minute letters. Her miniature
helped us much in attracting the audience of the summer school.



vi Preface

) We are thankful to the student team hired by the university comprising Anet
Izmitli, Egemen Kirant, Giince Orman, Haris Saybasih and Eylem Sentiirk for
turning this summer school into a pleasant experience.

Finally we would like to thank warmly Prof. Dr. Duygun Yarsuvat, the rec-
tor of the Galatasaray University for offering us the great location and financial
support of the university.

The second named editor was supported by TUBITAK grant Kariyer 103T136
during the summer school and during the preperation of this volume.

Rolf-Peter Holzapfel, A. Muhammed Uludag and Masaaki Yoshida, Editors

PROGRAM

Daniel Allcock: Real hyperbolic geometry in moduli problems

Igor Dolgachev: Moduli spaces as ball quotients (followed by Kondo’s lectures)
Rolf Peter Holzapfel: Orbital Varieties and Invariants

Michel Jambu: Arrangements of Hyperplanes

A. Kochubei: Hypergeometric functions and Carlitz differential equations over
function fields

Shigeyuki Kondo: Complex ball uniformizations of the moduli spaces of del Pezzo
surfaces

Edward Looijenga: (first week) Introduction to Deligne-Mostow theory

Edward Looijenga: (second week) Hypergeometric functions associated to arrange-
ments

Keiji Matsumoto: Invariant functions with respect to the Whitehead link

Hironori Shiga: Hypergeometric functions and arithmetic geometric means (fol-
lowed by Wolfart’s lectures)

Jan Stienstra: Gel’fand-Kapranov-Zelevinsky hypergeometric systems and their
role in mirror symmetry and in string theory

Toshiaki Terada: Hypergeometric representation of the group of pure braids.
A. Muhammed Uludag: Geometry of Complex Orbifolds

Alexander Varchenko: Special functions, KZ type equations, and representation
theory

Jiirgen Wolfart: Arithmetic of Schwarz maps (preceded by Shiga’s lectures)

Masaaki Yoshida: Schwarz maps (general introduction)
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Hyperbolic Geometry and the Moduli Space of
Real Binary Sextics

Daniel Allcock, James A. Carlson and Domingo Toledo

Abstract. The moduli space of real 6-tuples in CP! is modeled on a quotient
of hyperbolic 3-space by a nonarithmetic lattice in Isom H 3. This is partly
an expository note; the first part of it is an introduction to orbifolds and
hyperbolic reflection groups.

Keywords. Complex hyperbolic geometry, hyperbolic reflection groups, orb-
ifolds, moduli spaces, ball quotients.

These notes are an exposition of the key ideas behind our result that the
moduli space M, of stable real binary sextics is the quotient of real hyperbolic
3-space H?3 by a certain Coxeter group (together with its diagram automorphism).
We hope they can serve as an aid in understanding our work [3] on moduli of real
cubic surfaces, since exactly the same ideas are used, but the computations are
easier and the results can be visualized.

These notes derive from the first author’s lectures at the summer school
“Algebra and Geometry around Hypergeometric Functions”, held at Galatasary
University in Istanbul in July 2005. He is grateful to the organizers, fellow speakers
and students for making the workshop very rewarding. To keep the flavor of lec-
ture notes, not much has been added beyond the original content of the lectures;
some additional material appears in an appendix. The pictures are hand-drawn to
encourage readers to draw their own.

Lecture 1

Hyperbolic space H? is a Riemannian manifold for which one can write down an
explicit metric, but for us the following model will be more useful; it is called
the upper half-space model. Its underlying set is the set of points in R3 with

First author partly supported by NSF grant DMS 0231585. Second and third authors partly
supported by NSF grants DMS 9900543 and DMS 0200877.



2 Daniel Allcock, James A. Carlson and Domingo Toledo

positive vertical coordinate, and geodesics appear either as vertical half-lines, or
as semicircles with both ends resting on the bounding R?:

/7

Note that the ‘endpoints’ of these geodesics lie in the boundary of H?3, not in H?
itself. Planes appear either as vertical half-planes, or as hemispheres resting on

If two planes meet then their intersection is a geodesic. The most important prop-
erty of the upper half-space model is that it is conformal, meaning that an angle
between planes under the hyperbolic metric equals the Euclidean angle between
the half-planes and/or hemispheres. For example, the following angle 6 looks like
a w/4 angle, so it is a 7/4 angle:
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This lets us build hyperbolic polyhedra with specified angles by pushing
planes around. For example, the diagram

O ® O o P (1)

describes a polyhedron Py with four walls, corresponding to the nodes, with the
interior angle between two walls being 7/2, 7/3 or 7/4 according to whether the
nodes are joined by no edge, a single edge or a double edge. For now, ignore the col-
ors of the nodes; they play no role until Theorem 2. We can build a concrete model
of Py by observing that the first three nodes describe a Euclidean (7/2, /4, 7/4)
triangle, so the first three walls should be arranged to appear as vertical half-
planes. Sometimes pictures like this can be easier to understand if you also draw
the view down from vertical infinity; here are both pictures:

How to fit in the fourth plane? After playing with it one discovers that it cannot
appear as a vertical halfplane, so we look for a suitable hemisphere. It must be
orthogonal to two of our three walls, so it is centered at the foot of one of the half-
lines of intersection. The radius of the hemisphere is forced to be 2 because of the
angle it makes with the remaining wall (namely 7/3). We have drawn the picture
so that the hemisphere is centered at the foot of the back edge. The figure should
continue to vertical infinity, but we cut it off because seeing the cross-section makes
the polyhedron easier to understand. We've also drawn the view from above; the
boundary circle of the hemisphere strictly contains the triangle, corresponding to
the fact that Py does not descend all the way to the boundary R2.
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We think of Py as an infinitely tall triangular chimney with its bottom bitten off
by a hemisphere. The dimensions we have drawn on the overhead view refer to
Euclidean distances, not hyperbolic ones. The “radius” of a hemisphere has no
intrinsic meaning in hyperbolic geometry; indeed, the isometry group of H?® acts
transitively on planes.

Readers may enjoy trying their hands at this by drawing polyhedra for the
diagrams

’ . ®---- . - O P,

B (3)
[ _ O O O P3

where the absent, single and double bonds mean the same as before, a triple bond
indicates a /6 angle, a heavy bond means parallel walls and a dashed bond means
ultraparallel walls. In the last two cases we describe the meaning by pictures:
Parallelism means

/W 7-FS-/2

and ultraparallelism means

=y,

That is, when two planes do not meet in H?, we call them parallel if they meet at
the boundary of H?, and ultraparallel if they do not meet even there.

Diagrams like (1) and (3) are called Coxeter diagrams after H. S. M. Coxeter,
who introduced them to classify the finite groups generated by reflections. Given a
random diagram, there is no guarantee that one can find a hyperbolic polyhedron
with those angles, but if there is one then it describes a discrete group acting on
H3:

Theorem 1 (Poincaré Polyhedron Theorem). Suppose P C H 3 is a polyhedron
(i.e., the intersection of a finite number of closed half-spaces) with every dihedral
angle of the form m/(an integer). Let I' be the group generated by the reflections
across the walls of P. Then T is discrete in Isom H® and P is a fundamental
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domain for ' in the strong sense: every point of H® is I'-equivalent to exactly one
point of P.

The proof is a very pretty covering space argument; see [5] for this and
for a nice introduction to Coxeter groups in general. A reflection across a plane
means the unique isometry of H® that fixes the plane pointwise and exchanges the
components of its complement. A reflection across a vertical half-plane looks like
an ordinary Euclidean reflection, and a reflection across a hemisphere means an
inversion in it; here are before-and-after pictures of an inversion.

An inversion exchanges vertical infinity with the point of R? “at the center” of the
hemisphere.

The data of a group I' acting discretely on H? is encoded by an object called
an orbifold. As a topological space it is H%/T", but the orbifold has more structure.
An orbifold chart on a topological space X is a continuous map from an open
subset U of R™ to X, that factors as

U—>U/FU—>X,

where I'y; is a finite group acting on U and the second map is a homeomorphism
onto its image. Our H3/T has lots of such charts, because if z € H? has stabilizer
I';, and U is a sufficiently small open ball around z, then

U—U/T, — HYT

is an orbifold chart. An orbifold is a space locally modeled on a manifold mod-
ulo finite groups. Formally, an orbifold X is a hausdorff space covered by such
charts, with the compatibility condition that if x € X lies in the image of charts
U—U/Ty — X and U' — U'/Tys — X then there are preimages v and v of
in U and U’ with neighborhoods V' and V' preserved by I'y, and 'y ., an iso-
morphism Iy, = 'y v and an equivariant isomorphism 7v,y between V' and \%4
identifying v with v'. The group I'y,, is called the local group at z, and the nature
of the isomorphisms 7,y determines the nature of the orbifold. That is, if all the
Tv,v+ are homeomorphisms then X is a topological orbifold, if all are real-analytic
diffeomorphisms then X is a real-analytic orbifold, if all are hyperbolic isometries
then X is a hyperbolic orbifold, and so on. So H3/I is a hyperbolic orbifold. There
is a notion of orbifold universal cover which allows one to reconstruct H® and its
I'-action from the orbifold H3/T.
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Only in two dimensions is it easy to draw pictures of orbifold charts; here
they are for the quotient of the upper half-plane H? by the group I generated by
reflections across the edges of the famous (7/2,7/3,7/00) triangle.

mod out by T’
—

Here are local orbifold charts around various points of H?/T":

Q_ ,@C:Press@‘fold CD

Sl AN rers
D=7

2@

For three-dimensional Coxeter groups essentially the same thing happens: the local
chart at a generic point of a wall is the quotient of a 3-ball by a reflection, and
along an edge it is the quotient of a 3-ball by a dihedral group. One needs to
understand the finite Coxeter groups in dimension 3 in order to understand the
folding at the vertices, but this is not necessary here.

We care about hyperbolic orbifolds because it turns out that moduli spaces
arising in algebraic geometry are usually orbifolds, and it happens sometimes that
such a moduli space happens to coincide with a quotient of hyperbolic space (or
complex hyperbolic space or one of the other symmetric spaces). So we can some-
times gain insight into the algebraic geometry by manipulating simple objects like
tilings of hyperbolic space.

Suppose a Lie group G acts properly on a smooth manifold X, with finite
stabilizers. (Properly means that each compact set K in X meets only “compactly
many” of its translates—that is, there exists a compact set in G such that if g € G
lies outside it, then K N gK = (. This is needed for the quotient space to be
Hausdorff.) Because G acts on the left, we write G\ X for the quotient, which is an
orbifold by the following construction. For € X one can find a small transversal 7'
to the orbit G.z, which is preserved by the stabilizer G;. Then T — G \T — G\ X
gives an orbifold chart. In particular, the local group at the image of z in G\X
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is G. If X is real-analytic and G acts real-analytically then G\ X is a real-analytic
orbifold.

Now we come to the case which concerns us. Let € be the set of binary sextics,
i.e., nonzero 2-variable homogeneous complex polynomials of degree 6, modulo
scalars, so € = CPS. Let C® be the subset given by those with real coeflicients,
Co the smooth sextics (those with 6 distinct roots), and C§ the intersection. Then
G = PGLyC acts on € and Gy and G® = PGLsR acts on CR and C¥. The moduli
space My of smooth binary sextics is G\Cp, of 3 complex dimensions. The real
moduli space MR GR\G is not the moduli space of 6-tuples in RP'; rather it is
the moduli space of nonsingular 6-tuples in CP! which are preserved by complex
conjugation. This set has 4 components, M](li ; being GR\Cg ;j» where j indicates the
number of pairs of conjugate roots. It turns out that G acts properly on Cg, and
since the point stabilizers are compact algebraic subgroups of G they are finite;
therefore My is a complex-analytic orbifold and the M& ; are real-analytic orbifolds.
The relation with hyperbolic geometry begins with the following theorem:

Theorem 2. Let I'; be the group generated by the Cozeter group of P; from (1) or
(3), together with the diagram automorphism when j = 1. Then MX ; s the orbifold
H3/T';, minus the image therein of the walls cor'respondmg to the blackened nodes
and the edges corresponding to triple bonds. Here, ‘is’ means an isomorphism of
real-analytic orbifolds.

In the second lecture we will see that the faces of the P; corresponding to
blackened nodes and triple bonds are very interesting; we will glue the P; together
to obtain a real-hyperbolic description of the entire moduli space.

References. The canonical references for hyperbolic geometry and an introduction
to orbifolds are Thurston’s notes [15] and book [16]. The book is a highly polished
treatment of a subset of the material in the notes, which inspired a great deal of
supplementary material, e.g., [4]. For other applications of hyperbolic geometry
to real algebraic geometry, see Nikulin’s papers [12] and [13], which among other
things describe moduli spaces of various sorts of K3 surfaces as quotients of H™.

Lecture 2

We will not really provide a proof of Theorem 2; instead we will develop the ideas
behind it just enough to motivate the main construction leading to Theorem 4
below. Although Theorem 2 concerns smooth sextics, it turns out to be better to
consider mildly singular sextics as well. Namely, let C; be the set of binary sextics
with no point of multiplicity 3 or higher, and let A C €, be the discriminant,
so Gy = G5 — A. (For those who have seen geometric invariant theory, G, is the
set of stable sextics, hence the subscript s.) It is easy to see that A is a normal
crossing divisor in €,. (In the space of ordered 6-tuples in CP! this is clear; to
get the picture in Cs one mods out by permutations.) Now let F; be the universal
branched cover of G4, with ramification of order 6 along each component of the
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preimage of A. F; turns out to be smooth and the preimage of A a normal crossing
divisor. More precisely, in a neighborhood of a point of F5 describing a sextic with
k double points, the map to C; is given locally by

(Zlv"'sz)H (z?""vzgvzk+1a"'726)7

where the branch locus is the union of the hypersurfaces z; =0, ..., 2 = 0. Let Fy
be the preimage of Gy and let I' be the deck group of Fs over C;. We call an element
of Fs (resp. Fo) a framed stable (resp. smooth) binary sextic. Geometric invariant
theory implies that G acts properly on C,, and one can show that this G-action
lifts to one on Fs which is not only proper but free, so G\JFs is a complex manifold.
The reason we use 6-fold branching rather than some other sort of branching is
that in this case G\JFs has a nice description, given by the following theorem. See
the appendix for a sketch of the Hodge theory involved in the proof.

Theorem 3 (Deligne-Mostow [6]). There is a properly discontinuous action of I' on
complex hyperbolic 3-space CH? and a T-equivariant complez-manifold diffeomor-
phism g : G\F, — CH?3, identifying G\Fo with the complement of a hyperplane
arrangement 3 in CH?.

Complex hyperbolic space is like ordinary hyperbolic space except that it has
3 complex dimensions, and hyperplanes have complex codimension 1. There is an
upper-half space model analogous to the real case, but the most common model
for it is the (open) complex ball. This is analogous to the Poincaré ball model for
real hyperbolic space; we don’t need the ball model except to see that complex
conjugation of CH3, thought of as the complex 3-ball, has fixed-point set the real
3-ball, which is H?3. )

Given a framed stable sextic S, Theorem 3 gives us a point g(S) of CH?.
If S lies in F5 (the preimage of CR), say over S € €R, then we can do better,
obtaining not just a point of CH? but also a copy of H 3 containing it. The idea
is that complex conjugation x of Gy preserves S and lifts to an antiholomorphic
involution (briefly, an anti-involution) & of Fo that fixes S. This uses the facts
that Fo — Cp is a covering space and that m (Fy) C m(Cp) is preserved by k.
Riemann extension extends & to an anti-involution of F,. Since x normalizes G’s
action on C,, & normalizes G’s action on J, so & descends to an anti-involution &’
of CH?® = G\J;. Each anti-involution of CH? has a copy of H? as its fixed-point
set, so we have defined a map g® from FE to the set of pairs

(z € CH?, a copy of H? containing z). (4)

Note that & fixes every point of F& sufficiently near S, so all nearby framed real sex-
tics determine the same anti-involution ' of CH?3. Together with the G-invariance
of g, this proves that g® is invariant under the identity component of GE. A closer
study of g® shows that it is actually invariant under all of GR. We write K for the
set of pairs (4) in the image g% (5 ). An argument relating points of €, preserved
by anti-involutions in G x (Z/2) to points of CH? preserved by anti-involutions in
I'x(Z/2) shows that if = € Ty has image (g(x), H), then every pair (y € H—3(, H)
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also lies in K. That is, K is the disjoint union of a bunch of H?3’s, minus their in-
tersections with (. The theoretical content of Theorem 2 is that g® : GR\F& — K|
is a diffeomorphism.

The computational part of Theorem 2 is the explicit description of Kj, in
enough detail to understand My = G\Fy/T = Ko /T concretely. It turns out that
I', € and the anti-involutions can all be described cleanly in terms of a certain
lattice A over the Eisenstein integers & = Z[w=e?""/3]. Namely, A is a rank 4 free
&-module with Hermitian form

(a|a> = apag — a1G1 — G202 — a3as3 . (5)

The set of positive lines in P(C® = A ®¢ C) is a complex 3-ball (i.e., CH?),
T = PAut A, 3 is the union of the hyperplanes orthogonal to norm —1 elements
of A, and the anti-involutions of CH?® corresponding to the elements of Ky are
exactly

Ko : (%o, 21, T2, 73 (Zo, 21, 532, Z3

) — )
k1 : (To, 1, T2, 3) > (o, Z1, —Z3) ©)
ke : (20,21, T2,23) — (ZTo, T1,—T2, —x3)
k3 : (w0, T1,T2,23) — (&0, —Z1, —T2, —T3)
and their conjugates by I'. We write H; 3 for the fixed-point set of &;.

Since H3,...,H3 form a complete set of representatives for the H’s com-
prising Ko, we have

3
3
M§ = Ko/T = H (H; :H)/(its stabilizer T'; in T')

Understanding the stabilizers I'; required a little luck. Vinberg devised an algo-
rithm for searching for a fundamental domain for a discrete group acting on H™
that is generated by reflections [18]. It is not guaranteed to terminate, but if it
does then it gives a fundamental domain. We were lucky and it did terminate; the
reflection subgroup of I'; turns out to be the Coxeter group of the polyhedron P;.
One can obtain our polyhedra by applying his algorithm to the Z-sublattices
of A fixed by each k;. For example, an element of the re-invariant part of A has
the form (ag, a1, aav/—3,a3v— 3) with ao, ..., a3 € Z, of norm ao —a1 3(12 3a3
Similar analysis leads to the norm forms
ala) = aj — af - o} — d}
ala) = @} — o~ a? 303
ala) = a2 — a? — 3a3 — 3a}
(aa) = a2 — 3a? — 3a3 — 3a3
in the four cases of (6). Now, I'; lies between its reflection subgroup and the
semidirect product of this subgroup by its diagram automorphisms. After checking



