6TH WORKSHOP ON PARALLEL AND
DISTRIBUTED SIMULATION (PADS92)

 Edited by

Marc Abrams
and
Paul F. Reynolds, Jr.

==

cans =
Simulation Series : 9
Volume 24 | -
-~ Number 3
Q K]
L Y
6
Ecg A PUBLICATION OF THE SOCIETY FOR COMPUTER SIMULATIONV

9350596

6th Workshop on Parallel and Distributed
Simulation (PADS92)

Proceedings of the 1992 SCS Western Simulation MultiConference
on Parallel and Distributed Simulation
20-22 January 1992
Newport Beach, California

Edited by
Marc Abrams
Virginia Polytechnic Institute and State University
and
Paul F. Reynolds, Jr.
University of Virginia

Simulation Series
Volume 24
Number 3

Sponsored by:
The Society for Computer Simulation
Institute of Electrical and Electronics Engineers
Association of Computing Machinery

MMRANAN

E9360696

© 1992 SIMULATION COUNCILS, INC.

Responsibility for the accuracy of all statements in each paper rests solely with the author(s). Statements
are not necessarily representative of nor endorsed by The Society for Computer Simulation.

Permission is granted to photocopy portions of this publication for personal use and for the use of students
providing credit is given to the conference and publication. Permission does not extend to other types of
reproduction nor to copying for incorporationinto commercial advertising nor for any other profit-making
purpose. Other publications are encouraged to include 300- to 500-word abstracts or excerpts from any
paper contained in this book, provided credits are given to the author and the conference. For permission
to publish a complete paper write: The Society for Computer Simulation (SCS), P. O. Box 17900, San
Diego, CA 92177, U.S.A.

Additional copies of the Proceedings are available from:
The Society for Computer Simulation

P. O. Box 17900
San Diego, CA 92177 US.A.

ISBN 1-56555-008-0

PRINTED IN THE UNITED STATES

6th Workshop on Parallel and
Distributed Simulation (PADS92)

Titles in the Simulation Series

Vol. 1 No. 1 Mathematical Models of Public Systems ~ George A. Bekey, Editor January 1971

Vol. 1 No. 2 Systems and Simulation in the Service of Society David D. Sworder, Editor July 1971

Vol. 2 No. 1 The Mathematics of Large-Scale Simulation Paul Brock, Editor June 1972

Vol. 2 No. 2 Recent Developments in Urban Gaming Philip D. Patterson, Editor December 1972

Vol. 3 No. 1 Computer Simulation in Design Applications Sail Ashour and Marvin M. Johnson, Editors June 1973

Vol. 3 No. 2 Simulation Systems for Manufacturing Industries Marvin M. Johnson and Said Ashour, Editors December 1973

Vol. 4 No. 1 Annotated Bibliographies of Simulation Tuncer |. Oren, Editor June 1974

Vol. 4 No. 2 Spanning the Applications of Simulation Paul Brock, Editor December 1974

Vol. 5No. 1 New Directions in the Analysis of Ecological Systems: Part 1~ George S. Innis, Editor June 1975

Vol. 5 No. 2 New Directions in the Analysis of Ecological Systems: Part 2 George S. Innis, Editor December 1975

Vol. 6 No. 1 Toward Real-Time Simulation (Languages, Models and Systems), Part 1 Roy E. Crosbie and John L. Hay, Editors June 1976
Vol. 6 No. 2 Toward Real-Time Simulation (Languages, Models and Systems), Part 2 Roy E. Crosbie and John L. Hay, Editors December 1976
Vol. 7 No. 1 An Overview of Simulation in Highway Transportation: Part 1 James E. Bernard, Editor June 1977

Vol. 7 No. 2 An Overview of Simulation in Highway Transportation: Part 2 James E. Bernard, Editor December 1977

Vol. 8 No. 1 Simulation in Energy Systems: Part 1 Kenneth E. F. Watt, Editor June 1978

Vol. 8 No. 2 Simulation of Energy Systerns: Part 2 Kenneth E. F. Watt, Editor December 1978

Vol. 9 No. 1 Simulation in Business Planning and Decision Making Thomas H. Naylor, Editor July 1981

Vol. 9 No. 2 Simulating the Environmental Impact of a Large Hydroelectric Project Normand Therien, Editor July 1981

Vol. 10 No. 1 Survey of the Apllication of Simulation to Health Care Stephen D. Roberts and William L. England, Editors December 1981
Vol. 10 No. 2 Computer Modeling and Simulation: Principles of Good Practice John McLeod, Editor June 1982

Vol. 11 No. 1 Peripheral Array Processors Walter). Karplus, Editor October 1982

Vol. 11 No. 2 Computer Simulation in Emergency Planning John M. Carroll, Editor January 1983

Vol. 12 No. Lumped-Parameter Models of Hydrocarbon Reservoirs Ellis A. Monash, Editor March 1983

1
Vol. 12 No. 2 Computer Models for Production and Inventory Control Haluk Bekiroglu, Editor January 1984
Vol. 13 No. 1 Aerospace Simulation Monte Ung, Editor ~ February 1984
Vol. 13 No. 2 Simulation in Strongly Typed Languages: ADA, PASCAL, SIMULA... Ray Bryantand Brian W. Unger, Editors February 1984
Vol. 14 No. 1 All About Simulators, 1984 Vince Amico and A. Ben Clymer, Editors ~ April 1984
Vol. 14 No. 2 Peripheral Array Processors Walter J. Karplus, Editor ~ October 1984
Vol. 15 No. 1 Emergency Planning John M. Carroll, Editor January 1985
Vol. 15 No. 2 Distributed Simulation 1985 Paul F. Reynolds, Editor January 1985

Vol. 16 No. 1 Simulators John S. Gardenier, Editor March 1985

Vol. 16 No. 2 Aerospace Simulation Il Monte Ung, Editor January 1986

Vol. 17 No. 1 Intelligent Simulation Environments Paul A. Luker and Heimo H. Adelsberger, Editors January 1986
Vol. 17 No. 2 Simulators Il Bruce T. Fairchild, Editor March 1986

Vol. 18 No. 1 Al Applied to Simulation E.). H. Kerckhoffs, G. C. Vansteenkiste and B. P. Zeigler, Editors February 1986
Vol. 18 No. 2 Multiprocessors and Array Processors ~ Walter). Karplus, Editor April 1987

Vol. 18 No. 3 Simulation and Al Paul Luker and Graham Birtwistle, Editors July 1987

Vol. 18 No. 4 Simulators IV Bruce T. Fairchild, Editor October 1987

Vol. 19 No. Methodology and Validation ~ Osman Balci, Editor January 1988

Vol. 19 No. Aerospace Simulation Illl Monte Ung, Editor April 1988

Vol. 19 No. Distributed Simulation, 1988 Brian Unger and David Jefferson, Editors July 1988

Vol. 19 No. Simulators V. A. Ben Clymer and G. Vince Amico, Editors October 1988

Vol. 20 No. Al Papers, 1988 Ranjeet). Uttamsingh, Editor January 1989

Vol. 20 No.
Vol. 20 No.

1
2
3
4
1
2 Simulation in Emergency Management and Technology Jim Sullivan and Ross T. Newkirk, Editors ~ April 1988

3 Simulation and Al, 1989 Wade Webster, Editor ~ April 1988

Vol. 20 No. 4 Advances in Al and Simulation Ranjeet Uttamsingh and A. Martin Wildberger, Editors March 1989

Vol. 21 No. 1 Multiprocessors and Amay Processors V Walter J. Karplus, Editor ~ March 1989

Vol. 21 No. 2 Distributed Simulation, 1989 Brian Unger and Richard Fujimoto, Editors March 1989

Vol. 21 No. 3 Simulators VI Ariel Sharon and Mohammad R. Fakory, Editors March 1989

Vol. 21 No. 4 Simulation in Business and Management Sal Belardo and Jay Weinroth, Editors January 1990

Vol. 22 No. 1 Distributed Simulation David Nicol, Editor January 1990

Vol. 22 No. 2 Simulators VIl Ariel Sharon and M. R. Fakory, Editors April 1990

Vol. 22 No. 3 Al and Simulation: Theory and Applications Wade Webster and Ranjeet Uttamsingh, Editors April 1990

Vol. 22 No. 4 Simulation in Energy Systems - W. Frisch, B. Cordier, and A. Hold, Editors October 1990

Vol. 23 No. 1 Advances in Parallel and Distributed Simulation Vijay Madisetti, David Nicol, and Richard Fujimoto, Editors January 1991
Vol. 23 No. 2 Simulation in Business and Management Il Jay Weinroth and Joe Hilber, Editors January 1991

Vol. 23 No. 3 Object-Oriented Simulation, 1991 Raimund K. Ege, Editor January 1991

Vol. 23 No. 4 Antificial Intelligence and Simulation Ranjeet). Uttamsingh and A. Martin Wildberger, Editors April 1991

Vol. 24 No. 1 Simulators VIl Ariel Sharon, Editor ~ April 1991

Vol. 24 No. 2

Vol. 24 No. 3

Intemnational Conference on Simulation in Engineering Education Hamid Vakilzadian, Editor January 1992
6th Workshop on Parallel and Distributed Simulation (PADS92) ~ Marc Abrams and Paul F. Reynolds, Jr., Editors January 1992

TABLE OF CONTENTS

Hierarchical Parallel Discrete Event Simulation in Composite Elsa

PERFORMANCE EVALUATION STUDIES
An Experimental Study on the Performance of the Space-Time Simulation
Algorithm

Two Processor Conservative Simulation Analysis

The Role of Event Granularity in Parallel Simulation Design

POSTERS
An Orthogonal Multiprocessor System for Asynchronous Simulation

Language Support for Parallel Simulation

A Parallel Distributed Simulation System Using Tuple-Space

Animating the Execution of Time Warp Programs

Distributed Token-driven Logic Simulation on a Shared-memory Multiprocessor

A Deterministic Tie-breaking Scheme for Sequential and Distributed Simulation

Exploiting Dynamic Topological Information to Speed up Concurrent
Multicomputer Simulation

Partitioning and Transformation of VHDL Models for Distributed Simulation

Distributed Logic Simulation and an Approach to Asynchronous GVT-Calculation

Author Index

Vi

147

159

169

178

189

191

193

195

197

199

201

203

205

209

rvind

Py
>

D.
C

o]
»
3
D
=1

Rajive Bagrodia
K. Mani Chandy
Wen-Toh Liao

Robert E. Felderman
Leonard Kleinrock

Lisa M. Sokol
Paula A. Mutchler
Jon B. Weissman

Roman Tankelevich

Hassan Rajaei
Rassul Ayani

Richard S. Turner
Lewis I. Patterson
Robert M. Hyatt
Kevin D. Reilly

Samir Ranjan Das
Richard M. Fujimoto
John T. Stasko
Jonathan R. Engelsma
Moon Jung Chung
Yunmo Chung

Horst Mehl

Jiajen M. Lin

Guoqing Zhang

Herbert Bauer
Christian Sporrer

TABLE OF CONTENTS

Paper Page Author

PROTOCOLS AND HARDWARE

Massively Parallel Algorithms for Trace-Driven Cache Simulation 3 David M. Nicol
Albert G. Greenberg
Boris D. Lubachevsky
Subhas Roy

Synchronous Parallel Discrete Event Simulation on Shared-Memory Multiprocessors 12 Pavlos Konas
Pen-Chung Yew

Improving the Efficiency of a Framework for Parallel Simulations 22 Carmen M. Pancerella
MEMORY MANAGEMENT

On the Trade-off Between Time and Space in Optimistic Parallel 33 Bruno R. Preiss
Discrete-Event Simulation lan D. Macintyre

Wayne M. Loucks
Memory Management Algorithms for Optimistic Parallel Simulation 43 Yi-Bing Lin

State Skipping Performance with the Time Warp Operating System 53 Steven Bellenot

COMBINING PROTOCOLS

The MIMDIX Operating System for Parallel Simulation 65 Vijay K. Madisetti
David A. Hardaker
Richard M. Fujimoto

SPEEDES: A Unified Approach to Parallel Simulation 75 Jeff S. Steinman
An Efficient Optimistic Distributed Simulation Scheme Based on 85 Atul Prakash
Conditional Knowledge Rajalakshmi Subramanian

PROTOCOL INNOVATIONS

On Distributed and Pseudosimulation 97 Claire Cote
Carl Tropper
Virtual Time Synchronization of Replicated Processes 107 Arthur P. Goldberg
Performance Evaluation of the Bounded Time Warp Algorithm 117 Stephen J. Turner
Ming Q. Xu

VLSI AND DIGITAL LOGIC SIMULATION

An Evaluation of the Chandy-Misra-Bryant Algorithm for Digital Logic Simulation 129 Larry Soulé
Anoop Gupta

An Algorithm for Partitioning and Mapping Conservative Parallel Simulation 139 Biswajit Nandy

onto Multicomputers Wayne M. Loucks

PREFACE

This is the sixth proceedings of a series of workshops on techniques to execute discrete-event
simulation programs on parallel and distributed systems. Past proceedings are entitled Distributed
Simulation 1985, Distributed Simulation 1988, Distributed Simulation 1989, Distributed Simulation
(1990) and Advances in Parallel and Distributed Simulation (PADS) (1991). The fact that the
workshop continues after seven years implies a healthy and continuing interest in the topic.

To continue the role of PADS as the workshop which publishes the best new work in parallel
and distributed simulation, all papers and abstracts were subjected to a review process, with the
authors’ names and affiliations deleted, as announced in the Call for Papers. Each paper was sent
to four and in some cases five referees. Referees were carefully selected for each paper using two
criteria: to include individuals highly familiar with the subject material and to balance conflicting
schools of thought (e.g., advocates of conservative versus optimistic simulation). Forty one papers
and three poster abstracts were submitted. Of these, eighteen full papers (41%) from four countries
were selected for presentation and twelve were invited as poster abstracts. I'd like to thank members
of the program committee, who each reviewed four or more papers, and the remaining reviewers.
Several individuals provided outstanding quality reviews, with multiple pages of detailed comments
for authors.

A trend over the history of this workshop series has been to increase the proportion of papers
reporting results from completed systems applied to realistic simulation problems, rather than
accepting papers containing paper designs, preliminary results, and toy benchmarks. After reading
about 150 review reports that reinforce this trend in their rankings and comments, I can say that
the parallel simulation community has set for itself a high standard. This is good news, because

the papers appearing in PADS ultimately are more likely to be applied to problems encountered
by simulation practitioners.

Marc Abrams
Program Chair

vii

6th Workshop on Parallel and Distributed Simulation (PADS)

20-22 January 1992
Newport Beach, California, USA

ProGrAM COMMITTEE:

Paul F. Reynolds, Jr. (University of Virginia), General Chair
Marc Abrams (Virginia Polytechnic Institute and State University), Program Chair
Jon R. Agre (Rockwell Institute)

Rassul Ayani (Royal Institute of Technology)

Rajive L. Bagrodia (UCLA)

Doug DeGroot (Texas Instruments)

Robert E. Felderman (USC/Information Sciences Institute)
Richard M. Fujimoto (Georgia Institute of Technology)
David Jefferson (UCLA)

Ron Kriz (Virginia Polytechnic Institute and State University)
Yi-Bing Lin (Bellcore)

Boris Lubachevsky (Bell Labs)

Vijay Madisetti (Georgia Institute of Technology)

David M. Nicol (College of William and Mary)

Peter L. Reiher (Jet Propulsion Laboratory)

Lisa M. Sokol (MRJ, Inc.)

David B. Wagner (University of Colorado at Boulder)

REFEREES:
H. H. Ammar
N. Doraswamy M. Overstreet
S. Arthur -
s M. R. Eskicioglu E. Page
0. Balci .
. T. Fahriger C. Pancerello
M. Bailey .
. K. Ganugapati A. Prakash
W. Bain .
H. Bauer A. Gupta B. Preiss
P. Heidelberger C. Ribbens
S. Bellenot
A. Bloss D. Kafura C. Ryan
. P. Konas D. Richardson
J. Briner . .
R. Kriz V. Sanjeevan
P. Brown
; K. Landry R. Schantz
R. Chamberlain .
G. Lomow J. S. Steinman
C. Chandrasekar
. W. Loucks L. Soule
D. Cheriton .
M. J. Chun A. Maloney R. Subramanian
A. Conce cigon J. McAffer P. Tinker
B Gota 3 H. Mehl D. Towsley
. S. Midkiff C. Tropper
N. Davis . .
I. Mitrani H. Wu
5. Dhar C. Nevi G. Zhan
. . Nevison :
P. Dickens &

viii

PROTOCOLS AND HARDWARE

AR, B B SE #EPDFIE V7 0] ;. www. ertongbook. com

MASSIVELY PARALLEL ALGORITHMS FOR
TRACE-DRIVEN CACHE SIMULATION

David M. Nicol'*

Albert G. Greenberg?

Boris D. Lubachevsky?

Subhas Roy!

1 College of William and Mary

Williamsburg, VA 23185

Abstract

Trace-driven cache simulation is central to computer
design. A trace is a very long sequence, z1, ..., zn, of
references to lines (contiguous locations) from main
memory. The cache processes the trace serially; each
reference z; is hashed into a set of cache locations,
the contents of which are then compared with z;. If
at the t*® instant z, is not present in the cache, then
it 1s said to be a miss, and is loaded into the cache
set, possibly forcing the replacement of some other
memory line, and making z; present for the (t +1)**
instant. The problem of simulating this serial pro-
cess on a massively parallel computer is considered,
with the aim of determining which references are
misses and related statistics. We show that a sub-
trace of N references directed to a C line set, up-
dated using the Least-Recently-Used policy, can be

simulated in O(C'log N) time using N processors on
an exclusive read, exclusive write (EREW) parallel
model. We present timings of this algorithm’s im-
plementation on the MasPar MP-1, a machine with
216 processors. We also consider a broad class of
reference-based replacement policies, which includes,
for example, the Least-Frequently-Used replacement
policies. We show that a subtrace of N references
targeted to a C line set, updated via one of these
policies, can be simulated in O(Clog N) time with
high probability on an EREW model. The algo-
rithms are simple, require just O(1) space per refer-
ence, and are well-suited for SIMD implementation.

2AT & T Bell Laboratories
Murray Hill, NJ 07974

1 Introduction

A cache is a high-speed memory on the access path
to a larger, slower main memory. Cache performance
is critical to the overall performance of computer
systems [4], and consequently a tremendous amount
of effort is put into the evaluation of cache designs.
This is particularly true for RISC microprocessor de-
signs, where the ratio of the time needed to access
an off-chip cache to that needed to access the main
memory can be as high as 10 [4], and the off-chip
cache is typically at least 10 times smaller than the
main memory. Trace-driven simulations, which eval-
uate cache performance on actual reference streams
taken from characteristic programs, are the most re-
liable and widely used tools for cache design eval-
uation. These simulations require a great deal of
computation, because of the many different design
possibilities that are simulated, and because of the
length of the reference traces that drive the simula-
tion [15].

Data is moved between main memory and the
cache in contiguous blocks called lines. Every mem-
ory line is hashed to some fixed cache set, but may
be placed in any one of the C physical cache lines in
the set. In emerging computer designs, a micropro-
cessor might be supported by a 1 Megabyte off-chip
cache, with a line size of 128 bytes, and a set size
C = 4. Set size is typically small because the cost
of the hardware needed to support fast associative
search within a set grows rapidly with the set size,

*The work of this author was supported in part by NASA grants NAG-1-060 and NAS-1-18605, in part by NSF Grant ASC

8819373, and was initiated during a visit to AT&T Bell Laboratories.

and the experience has been that increasing the set
size quickly leads to diminishing returns. A miss
occurs whenever a memory line is referenced, but is
not found in its set. The cache hardware then fetches
the desired line from main memory, overwriting an-
other line in the same set if the set is full. The rule
used to select which line to replace is called the re-
placement policy. An effective, widely used policy is
Least-Recently-Used (LRU), which simply replaces
the line accessed least recently. The objective of a
trace-driven simulation is to determine which refer-
ences in the trace are misses. Given the identities
of the misses, statistics of chief interest in cache de-
sign are easily computed, such as the fraction of read
misses, the fraction of write misses, and the number
of write-backs (stores of modified lines) from cache
to main memory.

Heidelberger and Stone [3] showed that it is valu-
able to simulate a long trace directed to a few sets,
when cache miss statistics between sets are highly
correlated.! High correlation removes the need to
simulate all sets, but also removes the easy paral-
lelism that might be exploited by simulating a large
number of sets in parallel on different processing ele-
ments (PEs). A massively parallel method to handle
the simulation of a long trace targeted to a single set
would provide a more powerful, more flexible solu-
tion.

We consider the problem of determining the misses
in a given reference trace, z; , ..., zn, directed to
a set of size C. In Section 2, we show that if the
replacement policy is Least-Recently-Used, the sim-
ulation can be carried out in O(Clog N) time using
N/log N PEs on an EREW (exclusive read, exclu-
sive write) model. We report timings of this algo-
rithm’s performance on a MasPar [1] SIMD com-
puter having 216 PEs.

We also consider a class of reference-based re-
placement policies (defined below), which includes
LRU as well as

1Recent experiments (private communication from Harold
Stone) have validated that high correlation exists between
sets, but have also shown that special care must be taken
when selecting the sets which are analyzed, as the measured

miss ratio from an arbitrary set simulation may not be an
accurate predictor of the overall miss ratio.

¢ OPT: Replace the line referenced most remotely
in the future. This unrealizable policy prov-
ably minimizes the number of misses. Its simu-
lation gives a baseline against which realizable
policies can be measured.

¢ Least-Frequently-Used or LFU: Replace the line
accessed least often in the past. Ties can be
broken by, for example, giving higher prior-
ity to the reference that has been in the cache
the shortest length of time. Although we do
not discuss it here, a minor modification to
the algorithm we present allows us to simulate
Random replacement. This is important, as
random replacement is easy to implement and
there is evidence that if the total number of
lines in the cache (not just the lines in one set)
is sufficiently large, the policy works nearly as
well as any other implementable policy[4].

In Section 3, we sketch how to simulate a trace of
N references targeted to a C line set, updated via a
reference-based policy, in O(C log N) time with high
probability using N PEs on an EREW model.

Our algorithms are simple, require just O(1) space
per reference, and break the computation down into
calls to a few primitive parallel subroutines for both
data access and computation, such as parallel pre-
fix computations [7] (also known as scans [2]) and
sorting. As a result the algorithms are well-suited
for SIMD architectures, such as the Connection Ma-
chine [5] or MasPar [1]. The O(Clog N) with high
probability bound holds because we have assumed
that fast probabilistic parallel methods are used for
trapezoidal decomposition [13] and sorting using just
O(1) extra space per reference. (cf. [9, 12, 13, 14]
and references therein). In practice, simpler, asymp-
totically slower methods may do better. Adopt-
ing the notation of [13], these algorithms run in
O(log N) time using N PEs, meaning that there is
a constant k such that the time exceeds kmlog N
with probability less than N=™ for any m > 1.

For simplicity, we have assumed the problem size
N is comparable to the number of PEs, so that it is
as if each PE handles a few references (up to log N).
However, a “supersaturated” setup may be effective

in practice, where a large block of consecutive refer-
ences would be loaded in the local memory of each
PE. Our algorithms generalize immediately to that
setup, by simply replacing the underlying parallel
primitives with efficient supersaturated counterparts
(cf. [6,11]). Indeed, our implementation of the LRU
algorithm is a supersaturated one, with complexity
O(C(N/P + log P)) for a reference trace with N el-
ements on an architecture with P processors.

Collecting the cache miss statistics mentioned
above adds just O(log N) time. Moreover, by the
nature of the replacement policies and the simula-
tion methods, statistics for all cache sizes up to C
can be computed at this cost. All of our algorithms
can be adapted for efficient simultaneous simulation
of many sets, by the simple device of initially sorting
the references on the basis of their set identifiers.

Heidelberger and Stone [3] presented a parallel
simulation method for LRU. Their algorithm is in-
tended for a network of P MIMD processors, and
has complexity O((N logC/P) + Clog P) time and
O(C) space per processor. Lin, Baer, and Lazowska
have considered parallelizing cache simulations, in
the context of multiprocessor cache protocols[8]. Their
method assumes that each individual processor’s cache
is simulated on a different PE, so that the degree
of parallelism is limited to the number of caches in
the simulated system. An important and beautiful
paper on cache simulation was published in 1970 by
Mattson, Gecsei, Slutz, and Traiger[10). Most of our
notation is taken from that paper.

The practical utility of implementing trace-driven
cache simulations on today’s SIMD computers has
yet to be shown, although our implementation proves
the great promise of the approach. It seems likely
that a very long reference trace will have to be par-
titioned into blocks, where one block is processed at
a time. The I/0 problem is to move the blocks to
the processors fast enough to keep them busy. An
attractive alternative is to use a synthetic trace; for
example Thiebdubt, Stone, and Wolf [16] recently
proposed a simple method for random generation of
realistic traces.

2 LRU

Let us consider the simulation of a single set cache,
controlled using the LRU replacement policy, on a
sequence of line references z, Z3,..., zN. The prob-
lem is to compute, for each reference z;, whether z,
is a hit or a miss.

A little notation will help here and in succeed-
ing sections. Treating the set size C as a param-
eter, let B,(C) denote the set of lines stored Jjust
after reference z;. Each reference must be cached,
so 2y € B(C). If the cache is full (I1B:(C)] = ©)
and z; is a miss (z; ¢ B:i—1(C)) then z, replaces
the member of the cache ¥:(C) € B;_1(C) that was
referenced least recently. LRU belongs to the impor-
tant class of stack replacement policies [10], defined
by the property that increasing cache size cannot
increase cache misses:

B((C)C B{(C+1) ; for allC>1. (1)

Hence, we can order the lines in the cache by the set
size necessary for their appearance. Define the ;t*
element of B,(C) for t = 1, 2,..., by

B,(4) ifi=1
Bi()) - Bu(i—1) if|B(i)|=i>1 ,
0 otherwise

s,(i) =

2
where 0 is the empty line marker. It is convenient(tg
let “reference” z, be the empty line, so that so(i) =
Oforalli=1,...,C, and so(1) = y1(1) = 0. Under
the LRU replacement policy, we may think of the
cache as a stack. The most recent reference is always
stored at the top (z; = s,(1)), and the replaced line
is always the last, y,(C) = s¢-1(C).

Figure 1 depicts an example of a trace of 18 ref-
erences to 4 lines labeled a-d. Beneath the trace,
the rows are separated into 4 blocks, showing the
contents of the cache for set sizes C = 1, 2, 3, and
4; the t'» column shows the cache contents immedi-
ately following reference z,. Consider the block for
C = 3. The first three references, a, ¢, b, all miss
and at time ¢t = 3 are found in levels 3,2 and 1
of the cache, respectively, having pushed the empty
line markers out of the cache. At ¢ = 4, reference ¢
is a hit, moving ¢ to level 1, pushing b down to level

ReferenceIndex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C=1 trace |a ¢ b ¢ ¢c a ¢ a d b b d ¢ d a a b a
C=2 Levell|a ¢ b ¢ ¢ a ¢c ad b b d ¢ d a a b a
Level2 |0 a ¢ b b ¢ a ¢ a d d b d ¢ d d a b
Levell1|a ¢ b ¢ ¢ a ¢ a d b b d ¢ d. a a b a
C=3 Level2 |0 a c b b ¢c a ¢c a d d b d ¢ d d a b
Level 3|0 0 a a a b b b ¢ a a a b b ¢ ¢ d d
Levell|a ¢ b ¢ ¢ a ¢c a d b b d ¢ d a a b a
C=4 Level2 [0 a ¢ b b ¢ a ¢c a d d b d ¢ d d a b
Level 3 (0 0 a a a b b b ¢ a a a b b ¢ ¢ d d
Level4 |0 0 0 0 0 0 0 0 b ¢ ¢ ¢ a a b b ¢ e

Figure 1: Example of the LRU replacement rule; 0 is the empty line marker. The underscores indicate prior

hits, as discussed in the text.

2, and leaving a in place at level 3. The underscores
in the Figure show a pattern of prior hits, defined
as follows. A reference z; is said to be a prior hit at
level 7 if it is a hit when the cache size is i—1. In Fig-
ure 1, in the block for cache size C, we have marked
the prior hits z, at level C by underscoring the sym-
bol at level C—1 in column ¢. In studying this figure
one should remember that an underscore on symbol
s¢(7) states that symbol z; was a hit in a (i — 1)-line
cache, not that s,(7) was. The placement of under-
scores was chosen to highlight the propagation of a
symbols across a sequence of prior hit positions, to
be described below. For example, of the first ten ref-
erences four are prior hits at level 3—=z4, x5, z7, and
zg—because ¢ (= z4,z5,27) is found in B3(2), B4(2)
and Bg(2), and symbol a (zg) is found in B7(2). A
prior miss is a reference that is not a prior hit.

Consider s;(i), the line stored at level i of the
cache just after reference z; is issued. The observa-
tion behind our fast simulation is

84(3) = { s¢-1(7) if x; is a prior hit at level ¢
(3)

s1-1(i — 1) otherwise
To see this, note that if z; is a prior miss then the
cache update is to shift lines 1, 2, ..., i — 1 down
one position and then put z; into level one. If z, is
a prior hit then z, is already stored in a level < i,
and its move to position one has no effect on level i.
In Figure 1, for C = 3, we see that the 3¢ and the
6'» references are prior misses at level 3, and that
the intervening references are prior hits. As a result,

s2(2) = a enters level 3 at ¢ = 3 and propagates over
prior hits at level 3 until ¢t = 6, where it is replaced
with s5(2) = b, which in turn propagates up through
t = 8. In addition, note that (i) if z; is a hit for cache
size k, then it is a hit for cache sizes k + 1, k + 2,
..,C, and (ii) if z; is both a hit for cache size k and
a miss for cache size £ — 1 then the only possibility
is 8;—1(k) = z¢; i.e., the hit finds z; at cache level k.

Equation (3) allows us to build the contents of
the cache efficiently level by level, along with asso-
ciated hit/miss information. Specifically, for level i,
we compute the two N-vectors,

S;i = (s1(7), s2(7), ..., sn (7))
and
H; = (hl(i)a hZ(i)’ ¥ ¥ 5 hN(i))

, describing the cache contents at level i and marking
the references that result in hits: h(i)isj <iifj
is the smallest cache size in which z, is a hit, and is
0 otherwise. Observe that h,(7) # 0 gives z,’s stack
distance [10]. Thus given vector Hc and any j < C,
the number of hits in a j-line cache is the number of
elements h;(C) < j. For any j this number can be
computed in O(log N) time.

To initialize the computation, note that (1) S is
Just the trace, which is given, and (ii) h,(1) = 1
only if s/(1) = s;_1(1), so H; can be computed
in O(1) time. Suppose S;_; and H;_; are given,
i > 1, and held in vectors S = (0,sq,...,sy) and
H = (hy,...,hy), i > 1. Similarly, the reference
string is held in vector X = (xy,...,xy). First, we

want to update S to hold S;. Right shift S into a vec-
tor U= (uq,...,uy) so that ug = s¢_q4. If hg = 0
(the t*» reference is a prior miss) then we want to
update 8¢ toug. Otherwise we want to update s¢ to
uy where k is the greatest index less than ¢ such that
hg = 0 (the k' reference is a prior hit). Computing
these N updates is a segmented copy scan [2] where
indices t with hgy = 0 mark the segment boundaries.
The time needed is O(log N) using N/log N PEs.
To update H, we note that (i) if hy(i — 1) # 0 (i.e.
h¢ # 0) then hy(7) = hy(i—1) = hy # 0 so that hy is
left untouched, and (ii) if (i — 1) = 0 (i.e. hy = 0)
then hy should be set to i only if s;-1(:) = z; (i.e.
ut = x¢). Thus, updating H is trivially paralleliz-
able, and costs O(log N) time using N/log N PEs.
Since the updates are repeated C—1 times, the total
time needed comes to O(Clog N). The space used
throughout is O(1) per reference.

In a supersaturated implementation, the cost of a
segmented copy-scan is O(N/P+log P) [6], bringing
the overall cost to O(C(N/P + log P)) on P PEs,
with a space cost of O(N/P) per PE.

We implemented this algorithm on a MasPar MP-
1 computer [1], with 2!® processing elements. Fach
PE is a 4-bit processor with a clock cycle of 80
nanoseconds. A typical integer operation such as
those common in our algorithms requires a few tens

of clocks. Our implementation supports supersat-

uration of the PE’s, as described earlier. The PE
memory size permits us to assign as many as 2048
references to each PE, thereby supporting the si-
multaneous simulation of a trace with 227 references
(over 33 million).

The performance data we present includes only

the time spent in the solution phase of the algorithm.

Though the traces were generated randomly, the ex-

ecution times are indicative of what one would ex-
perience using actual traces. An industrial-strength
implementation would have to spend time loading
the trace; the I/O time required depends on the
available I/O hardware and the organization of the
trace on the I/O devices. In light of our timings,
it 1s clear that moving the trace onto the machine
may well be the most serious bottleneck an actual
implementation would face.

Our experiments vary the length of the trace
from 216 to 227, and the set size C from 2 to 32.
The presented timings are averages, given in mil-
liseconds, taken by executing the solution loop many
times in succession. These timings demonstrate the
remarkable promise of massive parallelism for trace-
driven cache simulation. Fewer than four and a
half seconds of execution time were required to ana-
lyze the behavior of a 32-line set on a trace with
33,554,432 references. As a point of comparison,
we measured the rate at which an optimized se-
rial LRU simulation processes references. The serial
code is written in C, and runs on a Sun Sparc 1++
workstation. After subtracting the time the serial
code spends generating a random trace, we find that
the MasPar implementation runs approximately 811
times faster. Of course, further experience needs to
be gained with the important non-LRU policies, and
with I/O problems. But the future of SIMD simula-
tion of caches looks bright.

3 Reference Based Replacement
Policies
We now broaden the scope of our methods to provide

fast parallel simulations for a large family of replace-
ment policies. Roughly, the class encompasses all

Trace Length
C | 216 917 918 919 920 921 922 923 924 925 926 927
4 114 17 22 32 51 9.0 169 327 642 127 253 505
8 | 28 34 44 65 106 189 35 68 135 268 533 1064
16| 57 7.0 9.1 134 21.8 388 729 140 277 549 1093 2182
321115 142 185 27 44 79 147 285 561 1112 2214 4417

Table 1: Execution time of the LRU algorithm on a MasPar MP-1 with 21 PEs, in milliseconds, as a function

of trace length and set size.

stack replacement policies where priorities control-
ling line replacement are static and can be computed
efficiently in parallel.

Recall that:

* By(C) denotes the cache contents just after z,
is issued and stored, and y:(C) denotes the line
(in B;_1(C)) that z, replaces if Z; is a miss.
We refer to y(C) as a replacee. (By conven-
tion, if B;(C) is not full (|B,(C)| < C) then
we define y;,(C) = 0, an empty line marker.)

* A stack replacement policy is one where in-
creasing the cache size cannot increase the cache
misses; i.e., equation (1) holds.

¢ Under any stack replacement policy, at any
time ¢, the lines stored in the cache can be
ordered by the set size necessary for their ap-
pearance. The ordering s,(i) is given in equa-
tion (2); the indices 7 are called levels.

Mattson et al. [10] show that a stack policy is
obtained if a numerical priority P(s4(%)) is assigned
to each line s;(:) at time t, and the line Y1+1(C)
chosen for replacement on loading z;4; is the one
with least priority among the members of B, (C).
In the class of reference-based priorities policies we
consider, a line’s priority is established at the point
it appears in the reference stream, after which it
remains constant until the line is referenced again.
These policies are thus characterized as follows.

1. All P(z,) values can be computed quickly in
parallel: in O(log N) time using N PEs. For
example, the priorities for LFU can be estab-
lished with a sort on the reference tags, fol-
lowed by a segmented sum-scan.

2. A line’s replacement priority does not change
except when the line appears in the reference
stream.

As before, let 0 denote the empty line marker. We
assume so(i) = 0 for all 1 < i < C and, by conven-
tion, the priority of an empty line marker is —oo.

Several important replacement policies are reference-

based, including

e LRU: P(.’L’t) = 1.

e LFU: P(z;) = Count(zy,t), the number of ref-
erences ry = r; for u < t. To break ties we
can, for example, give higher priority to the
reference that has been in the cache the short-
est length of time. (P(z:) = Count(z,,1) —
exp{—t} would serve that purpose.)

e OPT: P(x,) is the negation of the smallest in-
dex u > t such that =, = z,.

Figure 2 shows a possible execution of the LFU
policy on the same 18 reference trace used to illus-
trate the LRU policy in Figure 1. As before, for a
given cache size C, column t shows the cache con-
tents just after z,, and indicates that z; is a prior
hit at level C by underscoring the line at level C' — 1
in column t. The lines are arranged in level order.
The subscript for each reference gives its LFU prior-
ity among all references in the cache. In the case of
a tie we give the least-recently-used reference lower
priority. Consider, for example, the result of refer-
ence rg = d if the cache size C = 2. This is a miss
so a line must be replaced: either a at level 1 or ¢ at
level 2. The priority of ¢ (4) is greater than that of
a (3), so a is replaced. This illustrates that, unlike
LRU, for general reference-based policies the priority
order need not coincide with the level ordering.

To simulate a reference-based policy we must
compute priorities and then use them to compute
hits and misses. Priority computation is simple and
cheap for the policies listed above. Indeed, for LRU
or OPT, we can dispense with priority computa-
tions, as these are implicit in the solution of Sec-
tion 2. For LFU, a sort brings all references to
the same line together in O(log N) time, and a seg-
mented sum-scan produces the priority counts. Sup-
pose then that the priorities are given. Two facts
about reference-based policies which follow from the
analysis of [10] lead to our parallel simulation algo-
rithms:

o If a new line, say z;, enters level i at time ¢
(meaning s,(7) = 2, sy—1(i) # z) then z, must
be a prior miss at level i. Furthermore, z, must
be identically y;(i —1). For instance, in the ex-
ample of Figure 2, for C = 3, the prior misses

